

 UNIX Shell Scripting

Focus Training Services

Compiled and Edited By

Mr. Mahesh Chadare

Version 2.0

2

Focus Training Services - UNIX Shell Scripting V 1.0

Table of Contents

1 INTRODUCTION .. 4

1.1 OVERVIEW .. 4
1.2 WHY UNIX? .. 4
1.3 FEATURES OF UNIX .. 5
1.4 HOW UNIX IS ORGANIZED ... 6

2. BASIC UNIX COMMANDS .. 9

1.1 HOW TO LOGIN .. 9
1.2 FIND INFORMATION ABOUT YOUR SYSTEM ... 11

2 UNIX FILESYSTEM ... 21

3 FILE AND DIRECTORY COMMANDS ... 24

3.1 FILE RELATED COMMANDS ... 24

4 WHAT HAPPENS WHEN WE LOGIN/LOGOUT .. 35

4.1 A NEW SHELL IS STARTED ... 35
4.2 .BASH_PROFILE IS EXECUTED ... 35
4.3 YOU ARE PUT IN YOUR HOME DIRECTORY ... 36

5 INTRODUCTION TO SHELL PROGRAMMING .. 37

5.1 WHAT IS SHELL .. 37
5.2 SHELL TYPES .. 37
5.3 WHAT IS SHELL SCRIPT ? .. 38
5.4 WHEN TO WRITE SHELL SCRIPTS ... 39
5.5 OUR FIRST SHELL SCRIPT.. 40

6 SHELL VARIABLES .. 42

6.1 USER DEFINED VARIABLES ... 42
6.2 SYSTEM VARIABLES - ... 46
6.3 ALL ABOUT QUOTES .. 48

7 ADDITIONAL COMMANDS FOR OUR SHELL SCRIPT ... 51

7.1 TAR .. 51
7.2 THE READ STATEMENT... 54

8 COMMAND LINE ARGUMENTS & SPECIAL VARIABLES .. 55

9 EXIT STATUS: .. 60

10 ADVANCED UNIX COMMANDS(FILTERS) ... 61

10.1 HEAD ... 61
10.2 TAIL .. 62
10.3 WC ... 63
10.4 SORT ... 65
10.5 CUT ... 68
10.6 PASTE .. 70
10.7 GREP ... 71

3

Focus Training Services - UNIX Shell Scripting V 1.0

11 I/O REDIRECTION AND PIPES .. 74

11.1 WHAT ARE STANDARD INPUT AND STANDARD OUTPUT? .. 74
11.2 THE REDIRECTION OPERATORS .. 75
11.3 INPUT REDIRECTION ... 78
11.4 COMBINING REDIRECTIONS .. 79
11.5 ADVANCED REDIRECTION FEATURES ... 80
11.6 SYNTAX OF ERROR REDIRECTION: .. 82
11.7 HERE DOCUMENT .. 85
11.8 PIPE OPERATOR .. 87

12 CONTROL STATEMENTS .. 90

12.1 OPERATORS .. 90
12.2 STRING OPERATORS: .. 91
12.3 FILE TEST OPERATORS ... 91
12.4 THE IF...ELSE STATEMENTS:.. 93
2.2 SYNTAX: ... 93
2.3 EXAMPLE: ... 93
12.5 LOOPING STATEMENTS ... 103
12.6 BREAK AND CONTINUE STATEMENTS ... 109

13 READING FROM FILE ... 114

14 WILDCARDS IN UNIX ... 115

14.1 HOW TO USE UNIX WILDCARDS .. 115

15 FUNCTIONS ... 119

15.1 CREATING FUNCTIONS: ... 119
15.2 PASS PARAMETERS TO A FUNCTION: .. 120
15.3 RETURNING VALUES FROM FUNCTIONS: ... 120
EXAMPLE: .. 120
15.4 FUNCTION CALL FROM PROMPT: .. 121

16 ARRAYS... 123

16.1 DEFINING ARRAY VALUES: ... 123
16.2 ACCESSING ARRAY VALUES: ... 124

17 SIGNAL TRAPPING .. 126

17.1 LIST OF SIGNALS: ... 126
17.2 DEFAULT ACTIONS: .. 127
17.3 SENDING SIGNALS: ... 127
17.4 TRAPPING SIGNALS: ... 128

18 AWK ... 130

19 UNIX INTERVIEW QUESTIONS ... 138

20 USEFUL ASSIGNMENTS ... 143

20.1 SHELL SCRIPTING ASSIGNMENTS FOR LINUX ADMINS .. 143
20.2 SHELL SCRUPTING ASSIGNMENT FOR ORACLE .. 144

4

Focus Training Services - UNIX Shell Scripting V 1.0

1 Introduction

1.1 Overview

As we get started, students often ask "What is this Unix thing?"

In most general terms, Unix (pronounced "yoo-niks") is an Operating System. An Operating

System is a control program (or manager) for some type of hardware, often (but not always)

computer hardware.

1.2 Why Unix?

Unix is the most widely used computer Operating System (OS) in the world. Unix has been

ported to run on a wide range of computers, from handheld personal digital assistants (PDAs)

to inexpensive home computing systems to some of the worlds' largest super-computers. Unix

is a multiuser, multitasking operating system which enables many people to run many

programs on a single computer at the same time. After more than three decades of use, Unix is

still regarded as one of the most powerful, versatile, flexible and (perhaps most importantly)

reliable operating systems in the world of computing.

The UNIX operating system was designed to let a number of programmers access the computer

at the same time and share its resources.

The operating system controls all of the commands from all of the keyboards and all of the data

being generated, and permits each user to believe he or she is the only person working

on the computer.

This real-time sharing of resources makes UNIX one of the most powerful operating systems

ever.

Although UNIX was developed by programmers for programmers, it provides an environment

so powerful and flexible that it is found in businesses, sciences, academia, and industry.

Many telecommunications switches and transmission systems also are controlled by

administration and maintenance systems based on UNIX.

5

Focus Training Services - UNIX Shell Scripting V 1.0

While initially designed for medium-sized minicomputers, the operating system was soon

moved to larger, more powerful mainframe computers.

As personal computers grew in popularity, versions of UNIX found their way into these

boxes, and a number of companies produce UNIX-based machines for the scientific and

programming communities.

1.3 Features of UNIX

The Unix Operating System has a number of features that account for its flexibility, stability,

power, robustness and success. Some of these features include:

• Unix is a multi-user, multi-tasking Operating System, which allows multiple users to

access and share resources simultaneously (i.e. concurrently).

• The Unix OS is written in a modern, high-level programming language, specifically the C

programming language. This makes it easy for programmers to read and modify the

Unix source code, and more importantly, port this source code to other types of

hardware. This accounts for its presence on a very wide range of computer hardware

and other devices. Prior to being written in C, the Unix OS was written in assembly

language, as were most, if not all computer Operating Systems of the time.

• Unix hides the details of the low-level machine architecture from the user, making

application programs easier to port to other hardware.

• Unix provides a simple, but powerful command line User Interface (UI).

• The user interface provides primitive commands that can be combined to make larger

and more complex programs from smaller programs.

• Unix implementations provide a hierarchical file system, which allows for effective and

efficient implementation while providing a solid, logical file representation for the user.

6

Focus Training Services - UNIX Shell Scripting V 1.0

• Unix provides a consistent format for files, i.e. the byte stream, which aids in the

implementation of application programs. This also provides a consistent interface for

peripheral devices.

1.4 How UNIX is organized

The UNIX system is functionally organized at three levels:

The kernel, which schedules tasks and manages storage;

The shell, which connects and interprets users' commands, calls programs from memory, and

executes them and ,the tools and applications that offer additional functionality to the operating

system

7

Focus Training Services - UNIX Shell Scripting V 1.0

 1.4.1 The kernel

Kernel is heart of Unix Os.

It manages resource of Unix Os. Resources means facilities available in Unix. For e.g. Facility to

store data, print data on printer, memory, file management etc .

� Kernel decides who will use this resource, for how long and when. It runs your programs

(or set up to execute binary files).

� The kernel acts as an intermediary between the computer hardware and various

programs/application/shell.

� The kernel controls the hardware and turns part of the system on and off at the

programmer’s command. If we ask the computer to list (ls) all the files in a directory, the

kernel tells the computer to read all the files in that directory from the disk and display

them on our screen.

8

Focus Training Services - UNIX Shell Scripting V 1.0

1.4.2 The Shell

Computers understand the language of 0's and 1's called binary language. In early days of

computing, instruction are provided using binary language, which is difficult for all of us, to read

and write. So in OS there is special program called Shell. Shell accepts your instruction or

commands in English (mostly) and if it’s a valid command, it is passed to kernel.

Shell is a user program or it's an environment provided for user interaction. Shell is a command

language interpreter that executes commands read from the standard input device (keyboard)

or from a file.

Shell is not part of system kernel, but uses the system kernel to execute programs, create files

etc.

9

Focus Training Services - UNIX Shell Scripting V 1.0

2. Basic Unix Commands

1.1 How to login

1.1.1 putty

 You can logon from Windows machine to a UNIX server using software like putty.

10

Focus Training Services - UNIX Shell Scripting V 1.0

1.1.2 ssh

 SSH allows users of Unix workstations to secure their terminal and file transfer connections.

This page shows the straight forward ways to make these secure connections.SSH provides the

functional equivalent to the 'rlogin' utility, but in a secure fashion. SSH is freely available for

Unix-based systems, and should be installed with an accompanying man page. ssh connects and

 logs into the specified hostname (with optional user name).

The usermust prove his/her identity to the remote machine using one of several

methods depending on the protocol version used.

General Syntax with ssh are:

11

Focus Training Services - UNIX Shell Scripting V 1.0

$ ssh -l mahesh dbserver

$ ssh -l mahesh 172.24.0.252

Command Options

• l Login name It specifies the user to log in as on the remot machine.

 OR

 $ ssh mahesh@172.24.0.252

1.2 find information about your system

1.2.1 whoami

 If you are logged in with a username of “mahesh”, the whoami command will print mahesh

 on the terminal. In another words, it prints the effective userID.

[mahesh@station252 ~]$ whoami

 mahesh

[mahesh@station252 ~]$ ssh -l shekhar 172.24.0.252

 shekhar@172.24.0.252's password:

 Last login: Sat Dec 4 17:51:13 2010 from www.ftb.com

==

 WELCOME TO FOCUS TRAINING SERVICES

===

[shekhar@station252 ~]$

[shekhar@station252 ~]$ whoami

shekhar

[shekhar@station252 ~]$

12

Focus Training Services - UNIX Shell Scripting V 1.0

1.2.2 who

The who command displays a list of users currently logged in to the local system in detailed

format.

It displays each users

• login name,

• the login device (TTY port),

• the login date and time

The command reads the binary file /var/admn/utmpx to obtain this information and

information about where the users logged in from If a user logged in remotely the who

command displays the remote host name or internet Protocol (IP) address in the last column of

the output.

It's often a good idea to know their user id's so can mail them

messages. The who command displays the informative listing of users.

Here

• 1st column shows the username of users who are logged on server.

• 2nd column shows device names of their respective terminal.These arethe filenames

associated with the terminals.(mahesh's terminal is pts/1).

• 3rd,4th,5th column shows date and time of logging in.

Last column shows machine name/ip from where the user has logged in.

It has more options which can be used.

[root@sql ~]# who

stuser1 pts/0 2011-12-12 09:58 (172.24.1.180)

htuser7 pts/1 2011-12-12 10:57 (172.24.0.122)

stuser1 pts/2 2011-12-12 09:56 (172.24.1.180)

apuser1 pts/3 2011-12-12 10:53 (172.24.8.40)

kjuser3 pts/4 2011-12-12 11:21 (172.24.0.130)

oracle pts/5 2011-12-12 10:45 (172.24.8.40)

htuser6 pts/6 2011-12-12 11:09 (172.24.0.129)

htuser10 pts/7 2011-12-12 11:02 (172.24.0.241)

13

Focus Training Services - UNIX Shell Scripting V 1.0

-H → The option prints the column headers.

-u → The option prints with some more details like PID, IDLE time.

-b→ Indicate the time and date of the last reboot.

1.2.3 w

Show who is logged and what they are doing.

UNIX maintains an account of all users who are logged on to system but along with that,,it also

shows what that particular user doing on his machine.

It also displays information about the users currently on the machine, and their processes.

The header shows, in this order, the current time, how long the system has been running, how

many users are currently logged on, and the system load averages for the past 1, 5, and 15

minutes.

[mahesh@station60 ~]$ w

18:35:12 up 19:11, 7 users, load average: 0.01, 0.03, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

Htuser1 pts/1 station111.examp 16:25 2.00s 2.22s 0.53s sqlplus

Stuser5 pts/3 station121.examp 18:30 9.00s 2.55s 0.77s vim

The following entries are displayed for each user: login name,the tty name, the remote host,

login time, idle time, JCPU, PCPU, and the command line of their current process.

The JCPU time is the time used by all processes attached to the tty.

The PCPU time is the time used by the current process,named in the " what"field.

1.2.4 uname

knowing your machine charecteristic.

uname command displays certain features of the operating system running on your machine.

By default it simply displays the name of operating system.

Syntax

$ uname [-a] [-i] [-n] [-p] [-r] [-v]

14

Focus Training Services - UNIX Shell Scripting V 1.0

[mahesh@station60 ~]$ uname

Linux

[mahesh@station60 ~]$

Linux system simply shows Linux.

Using suitable options you can display certain key features of operating system.

Command Options.

Current release(-r).

Since UNIX commands varies across versions so much so that you'll need to use -r option to find

out the version of your operating system.

[mahesh@station60 ~]$ uname -r

2.6.18-194.el5

[mahesh@station252 ~]$

-a It will display everything related to your machine.

It will show you following key points.

• kernel name

• node name

• kernel release

• kernel version

• machine

• processor

• hardware platform

[mahesh@station60 ~]$ uname -a

Linux station60.example.com 2.6.18-194.el5 #1 SMP Tue Dec 10

21:52:43EDT 2010 i686 athlon i386 GNU/Linux

[mahesh@station60 ~]$

15

Focus Training Services - UNIX Shell Scripting V 1.0

-i Print the name of the hardware implementation (platform).

-n Print the nodename (the nodename is the name by which

 the system is known to a communications network).

1.2.5 uptime

Tell how long the system has been running.

Uptime gives a one line display of the following information.

The current time, how long the system has been running, how many users are currently logged

on, and the system load averages for the past 1, 5, and 15 minutes.

[mahesh@station60 ~]$ uptime

18:56:15 up 19:32, 8 users, load average: 1.60, 1.11, 0.63

[mahesh@station60 ~]$

1.2.6 users

It prints only usernames of current users who are logged in to the current

host(server).

 [root@sql ~]# users

apuser1 apuser1 apuser2 apuser3 apuser4 gbuser12 htuser13

htuser6 htuser7 kjuser3 kjuser4 nagnath nagnath oguser10 oracle

oracle rkuser10 rkuser18 rkuser2 rkuser32 rkuser9 root ssuser1

stuser1 stuser1

[root@sql ~]#

1.2.7 date

The date command can be used to display or set the date. If a user has superuser privileges, he

or she can set the date by supplying a numeric string with the following command:

Fortunately there are options to manipulate the format. The format option is preceded by a +

followed by any number of field descriptors indicated by a % followed by a character to indicate

which field is desired. The allowed field

16

Focus Training Services - UNIX Shell Scripting V 1.0

descriptors are:

%m month of year (01-12)

%n prints output to new line

%d day of month (01-31)

%y last two digits of year (00-99)

%D date as mm/dd/yy

%H hour (00-23)

%M minute (00-59)

%S second (00-59)

%T time as HH:MM:SS

%j day of year (001-366)

%w day of week (0-6) Sunday is 0

%a abbreviated weekday (Sun-Sat)

%h abbreviated month (Jan-Dec)

%r 12-hour time w/ AM/PM (e.g., "03:59:42 PM")

Examples

$ date

Mon Jan 6 16:07:23 PST 1997

$ date '+%a %h %d %T %y'

Mon Jan 06 16:07:23 97

$ date '+%a %h %d %n %T %y'

Mon Jan 06

16:07:23 97

17

Focus Training Services - UNIX Shell Scripting V 1.0

Set Date and Time

date [-s datestr]

-s datestr Sets the time and date to the value specified in the datestr. The datestr may

contain the month names, timezones, 'am', 'pm', etc. See examples for an example of how the

date and time can be set.

Examples

 $ date s "11/20/2003 12:48:00"

 Set the date to the date and time shown.

1.2.8 cal

Print a 12-month calendar (beginning with January) for the given year, or a one-month calendar

of the given month and year. month ranges from 1 to 12. year ranges from 1 to 9999. With no

arguments, print a calendar for the current month.

Before we can do the calendar program we must have a file named calendar at the root of your

profile. Within that file we may have something similar to:

Syntax

$ cal [options] [[month] year]

-j Display Julian dates (days numbered 1 to 365,

starting from January 1).

-m Display Monday as the first day of the week.

-y Display entire year.

-V Display the source of the calendar file.

month Specifies the month for us want the calendar to be displayed. Must be the numeric

representation of the

month. For example: January is 1 and December is 12.

18

Focus Training Services - UNIX Shell Scripting V 1.0

year Specifies the year that we want to be displayed.

Examples

$ cal

$ cal -j

$ cal –m

$ cal –y

$ cal –y 1980

$ cal 12 2006

$ cal 2006 > year_file

1.2.9 ifconfig

If a user wants to check the ip-address of his machine,he can use “ifconfig” command. Ifconfig

is used to configure the kernel-resident network interfaces. It is used at boot time to set up

interfaces as necessary. After that, it is usually only needed when debugging or when

system tuning is needed.

[root@station79 ~]# ifconfig

19

Focus Training Services - UNIX Shell Scripting V 1.0

eth0 Link encap:Ethernet HWaddr 52:54:00:34:1B:DD

 inet addr:172.24.0.240 Bcast:172.24.255.255 Mask:255.255.0.0

 inet6 addr: fe80::5054:ff:fe34:1bdd/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:122889 errors:0 dropped:0 overruns:0 frame:0

 TX packets:52488 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:17583628 (16.7 MiB) TX bytes:10094346 (9.6 MiB)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:19454 errors:0 dropped:0 overruns:0 frame:0

 TX packets:19454 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:1857754 (1.7 MiB) TX bytes:1857754 (1.7 MiB)

 Ip-Address of above machine is 172.24.0.240.

1.2.10 hostname

hostname command simply displays the fully qualified name of computer.

[mahesh@station60 ~]$ hostname

station60.example.com

[mahesh@station60 ~]$

1.2.11 free

 Display amount of free and used memory in the system.

It displays the total amount of free and used physical and swap memory in the system, as well

as the buffers used by the kernel.The shared memory column should be ignored; it is obsolete.

[root@sql ~]# free

 total used free shared buffers cached

Mem: 2055768 1965776 89992 0 138664 1116936

20

Focus Training Services - UNIX Shell Scripting V 1.0

-/+ buffers/cache: 710176 1345592

Swap: 4194296 0 4194296

[root@sql ~]#

In above output the memory description which is displayed it is in bytes.If user wants to display

it in required format that is in GB,MB or KB.

Command Options.

• $ free -k

It will show the output in Kilobytes.

• $ free -g

It will show the ouput in Gegabytes.

• $ free -m

It will show the output in Megabytes.

1.2.12 df -h

The df command displays information about total space and available space on a file system.

[mahesh@station60 ~]$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda1 494M 26M 444M 6% /boot

/dev/sda2 30G 15G 14G 52% /

/dev/sda7 2.0G 1.3G 624M 67% /home

/dev/sda5 6.8G 1.9G 4.6G 30% /var

/dev/sda3 7.7G 3.8G 3.6G 51% /usr

21

Focus Training Services - UNIX Shell Scripting V 1.0

2 Unix Filesystem

The Unix file system is a methodology for logically organizing and storing large quantities of

data such that the system is easy to manage. A file can be informally defined as a collection of

(typically related) data, which can be logically viewed as a stream of bytes (i.e. characters). A

file is the smallest unit of storage in the Unix file system.

By contrast, a file system consists of files, relationships to other files, as well as the attributes of

each file. File attributes are information relating to the file, but do not include the data

contained within a file. File attributes for a generic operating system might include (but are not

limited to):

• a file type (i.e. what kind of data is in the file)

• a file name (which may or may not include an extension)

• a physical file size

• a file owner

• file protection/privacy capability

• file time stamp (time and date created/modified)

Additionally, file systems provide tools which allow the manipulation of files, provide a

logical organization as well as provide services which map the logical organization of files to

physical devices.

From the beginners’ perspective, the Unix file system is essentially composed of files and

directories. Directories are special files that may contain other files.

The Unix file system has a hierarchical (or tree-like) structure with its highest level directory

called root (denoted by /, pronounced slash). Immediately below the root level directory are

several subdirectories, most of which contain system files.

22

Focus Training Services - UNIX Shell Scripting V 1.0

 Below this can exist system files, application files, and/or user data files. Similar to the concept

of the process parent-child relationship, all files on a Unix system are related to one another.

That is, files also have a parent-child existence. Thus, all files (except one) share a common

parental link, the top-most file (i.e. /) being the exception.

Below is a diagram (slice) of a "typical" Unix file system. As you can see, the top-most directory

is / (slash), with the directories directly beneath being system directories. Note that as Unix

implementations and vendors vary, so will this file system hierarchy. However, the organization

of most file systems is similar.

Tasks

• Making files available to users.

• Managing and monitoring the system's disk resources.

• Protecting against file corruption, hardware failures, user errors through backup.

• Security of these filesystems, what users need and have access to which files.

• Adding more disks, tape drives, etc when needed.

When Unix operating systems is installed, some directories depending upon the Unix being

installed are created under / (or root), such as /usr /bin /etc /tmp /home /var.

23

Focus Training Services - UNIX Shell Scripting V 1.0

• etc Contains all system configuration files and the files which maintain information

about users and groups.

• bin Contains all binary executable files (command that can be used by normal user also)

• usr Default directory provided by Unix OS to create users home directories and contains

manual pages - also contains executable commands

• tmp System or users create temporary files which will be removed when the server

reboots.

• dev Contains all device files i.e. logical file names to physical devices.

• home - contains user directories and files

• lib - contains all library files

• mnt - contains device files related to mounted devices

• proc - contains files related to system processes

• root - the root users' home directory (note this is different than /)

• home Default directory allocated for the home directories of normal users when the

administrator don’t specify any other directory.

• var Contains all system log files and message files.

24

Focus Training Services - UNIX Shell Scripting V 1.0

• sbin Contains all system administrator executable files (command which generally

normal users don’t have the privileges)

3 File and Directory commands

3.1 File Related Commands

3.1.1 ls

The ls command lists the files in your current working directory. When we log onto your

account on UNIX, your current working directory is your home or personal directory. This is the

directory in which we have personal disk space to put files on or to create sub-directories

under. The ls command also has options available.

Example: 1

[mahesh1@station60 ~]$ ls

case.sh for.sh hello.sh if.sh

[mahesh1@station60 ~]$

 the ls command without any option displays the files and directories

-l displays the long listing of files

Example: 2

[mahesh1@station60 ~]$ ls -l

total 0

-rw-rw-r-- 1 mahesh1 mahesh1 0 Dec 22 19:05 case.sh

-rw-rw-r-- 1 mahesh1 mahesh1 0 Dec 22 19:05 for.sh

-rw-rw-r-- 1 mahesh1 mahesh1 0 Dec 22 19:05 hello.sh

-rw-rw-r-- 1 mahesh1 mahesh1 0 Dec 22 19:05 if.sh

[mahesh1@station60 ~]$

25

Focus Training Services - UNIX Shell Scripting V 1.0

Column 1- tells us the type of file, what privileges it has and to whom these privileges are

granted. There are three types of privileges. Read and write privileges are easy to understand.

The exec privilege is a little more difficult. We can make a file "executable" by giving it exec

privileges. This means that commands in the file will be executed when we type the file name in

at the UNIX prompt. It also means that when a directory which, to UNIX is a file like any other

file, can be "scanned" to see what files and sub-directories are in it. Privileges are granted to

three levels of users:

_ 1) The owner of the file. The owner is usually, but not always, the userid that created the file.

_ 2) The group to which the owner belongs. At GSU, the group is usually, but not always

designated as the first three letters of the userid of the owner.

26

Focus Training Services - UNIX Shell Scripting V 1.0

_ 3) Everybody else who has an account on the UNIX machine where the file resides.

Column 2 - Number of links

Column 3 - Owner of the file. Normally the owner of the file is the user account that originally

created it.

Column 4 - Group under which the file belongs. This is by default the group to which the

account belongs or first three letters of the userid. The group can be changed by the chgrp

command.

Column 5 - Size of file (bytes).

Column 6 - Date of last update

Column 7 - Name of file

 Example: 3

$ ls -ld /usr

[mahesh1@station60 ~]$ ls -ld /usr

drwxr-xr-x 16 root root 4096 Sep 20 20:06 /usr

[mahesh1@station60 ~]$

Rather than list the files contained in the /usr directory, this command lists information about

the /usr directory itself (without generating a listing of the contents of /usr). This is very useful

when we want to check the permissions of the directory but not the content of the directory.

-a Shows us all files, even files that are hidden (these files begin with a dot.)

Example: 4

[mahesh1@station60 ~]$ ls -a

 .bash_logout .bashrc .emacs hello.sh .kde .bash_profile

case.sh for.sh if.sh .mozilla

[mahesh1@station60 ~]$

27

Focus Training Services - UNIX Shell Scripting V 1.0

3.1.2 cat

 The cat command is used to read a file and also to create

Examples:

a)creating a file

[mahesh1@station60 ~]$ cat >hello.txt

hi

welcome to unix Enter text and end with ctrl-D

[mahesh1@station60 ~]$

b)reading a file

[mahesh1@station60 ~]$ cat hello.txt

Hi

welcome to unix

[mahesh1@station60 ~]$

3.1.3 more

The more command in Linux is helpful when dealing with a small xterm window, or if you want

to easily read a file without using an editor to do so. More is a filter for paging through text one

screenful at a time.

I will show you the main uses of more here.

3.1.3.1 To View a File Using more

[mahesh1@station60 ~]$ more fur.sh

This will auto clear the screen and display the start of the file.

1 #!/bin/bash

2 beep 659 120 # Treble E

3 beep 0 120

4 beep 622 120 # Treble D#

5 beep 0 120

--More--(5%) <---- This line shows at what line you havereached

in the file relative to the entire file size.

If you hit space, then more will move down the file the height of the terminal window you have

open, to display new information to you.

28

Focus Training Services - UNIX Shell Scripting V 1.0

3.1.3.2 Pipe Output From ‘cat’ Into more

Sometimes you want to output an entire file, but view it slowly. For instance you may want to

view a README file before doing a build or an application.

[mahesh1@station60 ~]$ cat data.txt | more

This will then display the data.txt file but use the more processor to view the file at your own

pace.

3.1.3.3 View Two Files At The 20th Line Using more -p

If you want to see the 20th line of each file:

[mahesh1@station60 ~]$ more -p 20 fur.sh data.sh

More will then display the first file, followed by the second file informing you of the file change.

3.1.3.4 View A File Starting With Line Containing Using more -p /

[mahesh1@station60 ~]$ more -p /Erik data.txt

This will display from the first line that contains Erik in it. This is quite useful if you are looking

at patch files and know the filename you are looking for.

3.1.4 cp

1.cp command copies file or group of files.It creates exact image of the file on disk with

dirrraent name. The syntax requires at leasr two filenames to be specified in the command

line.When both are ordinary files,the first is copied to second:

[mahesh1@station60 ~]$ cp file1 file2

if the destion file (file2) does not exist ,it will first be created before coping takes place.If

 not it will simply be overwritten without any warinig from the system.

2.The cp is often used with the shorthand notation .(dot),to signify the current directory as the

destination.For instance to copy the file userlist.txt from /home/mahesh to your current

directory following command.

29

Focus Training Services - UNIX Shell Scripting V 1.0

[mahesh1@station60 ~]$cp /home/mahesh/userlist.txt .

3.cp can also be used to copy more than one file with a single invocation of the command.In

that case the last filename must be a directory.you can use the cp command as follows.

mahesh1@station60 ~]$cp file1 file2 file3 backup

Where the backup is a directory.

4.you can use wildcard * as follows

mahesh1@station60 ~]$cp file* backup

where the all the files file1,file2,file3 and likewise will be copied into a backup directory.

30

Focus Training Services - UNIX Shell Scripting V 1.0

3.1.5 mv

mv command has two distincts functions.

• It renames file(or directory)

• It moves a group of files to diffrant directory

mv doesn't create a copy of the file but it renames the file.No additional space is consumed on

disk during renaming.To rename the file hello.sh to welcome.sh use the following command.

[mahesh1@station60 ~]$ mv hello.sh welcome.sh

[mahesh1@station60 ~]$

mv simply replaces the filename in the existing directory entry with the new name.

To move the group of files to a directory.The following command moves files to a backup

directory

3.1.6 rm

The rm command deletes one or more files.It normally operates silently and should be used

with caution.

The following command deletes two files.

mahesh1@station60 ~]$rm file1 file2

Note: mahesh1@station60 ~]$ rm file*

command will dangerous to use in this case it will remove all the files whoes name starts with

file and end with any other characters.

Now see the following command that will delete all files in current directory.

31

Focus Training Services - UNIX Shell Scripting V 1.0

mahesh1@station60 ~]$rm *

-i option:

-i option warns the user before deleting the files.

[mahesh1@station60 ~]$ rm -i for.sh

 rm: remove regular empty file `for.sh'? y

[mahesh1@station60 ~]$

3.1.7 Using the VI editor

The VI editor is a screen−based text editor available on all Unix computers (and available for all

other kinds of computers). Given that it takes some effort to learn, why bother with VI? Because

� sometimes it’s the only available editor

� when you log on remotely (ssh) to a Unix host from a Mac or PC, only the text editors

(VI and

� emacs and pico) can be used to edit files, because they require no mouse

� mouse movements (menus, highlighting, clicking, scrolling) slow down the touch−typist

If you will be using Unix/Linux computers, especially via ssh, save yourself headaches and learn

the basics of VI now! In the following, ^X denotes a control character. For example, "^D"

means to hold down the Control key and press the "d" key. Also "Rtn" means to press the Return

(or Enter) key, while "Esc" means to press the Escape key, located in the far upper left corner of

the keyboard.

Starting: To edit a file named (say) "mytext" on a Unix computer, type the Unix command

"vi

mytext". Note that you must type the command with lowercase letters.

Two Modes: Pay attention, this is the crucial feature of VI! There are two modes, command

and insert. When in insert mode, everything you type appears in the document at the place where

32

Focus Training Services - UNIX Shell Scripting V 1.0

the blinking cursor is. When in command mode, keystrokes perform special functions rather than

actually inserting text to the document. (This makes up for the lack of mouse, menus, etc.!) You

must know which keystroke will switch you from one mode to the other:

• To switch to insert mode: press i (or a, or o)

• To switch to command mode: press Esc

Getting out: When you want to get out of the editor, switch to command mode (press Esc) if

necessary, and then

• type :wq Rtn to save the edited file and quit, or

• type :q! Rtn to quit the editor without saving changes, or

• type ZZ to save and quit (a shortcut for :wq Rtn), or

• type :w filename to save the edited file to new file "filename"

Moving Around: When in command mode you can use the arrow keys to move the cursor up,

down, left, right. In addition, these keystrokes will move the cursor:

h left one character

l right one character

k up one line

j down one line

b back one word

f forward one word

{ up one paragraph

} down one paragraph

$ to end of the line

^B back one page

^F forward one page

17G to line #17

G to the last line

Inserting Text: From command mode, these keystrokes switch you into insert mode with new

text being inserted

33

Focus Training Services - UNIX Shell Scripting V 1.0

i just before the current cursor position

a just after the current cursor position

o into a new line below current cursor

I at the beginning of the current line

A at the end of the current line

O into a new line above current cursor

Cutting, Copying, Pasting: From command mode, use these keystroke (or keystroke−

combination) commands for the described cut/copy/paste function:

• x delete (cut) character under the cursor

• 24x delete (cut) 24 characters

• dd delete (cut) current line

• 4dd delete (cut) four lines

• D delete to the end of the line from the cursor

• dw delete to the end of the current word

• yy copy (without cutting) current line

• 5yy copy (without cutting) 5 lines

• p paste after current cursor position/line

• P paste before current cursor position/line

Searching for Text: Instead of using the "Moving Around" commands, above, you can go

directly forward or backward to specified text using "/" and "?". Examples:

• /wavelet Rtn jump forward to the next occurrence of the string "wavelet"

• ?wavelet Rtn jump backward to the previous occurrence of the string "wavelet"

• n repeat the last search given by "/" or "?"

Replacing Text: This amounts to combining two steps; deleting, then inserting text.

• r replace 1 character (under the cursor) with another character

• 8r replace each of the next 8 characters with a given character

• R overwrite; replace text with typed input, ended with Esc

34

Focus Training Services - UNIX Shell Scripting V 1.0

• C replace from cursor to end of line, with typed input (ended with Esc)

• S replace entire line with typed input (ended with Esc)

• 4S replace 4 lines with typed input (ended with Esc)

• cw replace (remainder of) word with typed input (ended with Esc)

Miscellany: The commands on these two pages are just the start. Many more powerful

commands exist in VI. More complete descriptions of all the possible commands are available on

the web; search for "vi tutorial" or "vim tutorial". Useful commands include

u undo the last change to the file (and type "u" again to re−do the change)

U undo all changes to the current line

^G show the current filename and status and line number

:set nu Rtn show all line numbers (":set nonu" gets rid of the numbers)

^L clear and redraw the screen

:%s/Joe/Bob/g Rtn change every "Joe" to "Bob" throughout the document

J join this line to the next line

5J join 5 lines

xp exchange two characters (actually the two commands x=delete and p=paste)

:w Rtn write (save) the current text, but don’t quit VI

:12,17w filename Rtn write lines #12−17 of the current text to a (new) text file

35

Focus Training Services - UNIX Shell Scripting V 1.0

4 What happens when we login/logout

When we login to your UNIX account the following three things happen.

4.1 A New Shell is started

A new shell process is started for your session. This is the login shell that has been

assigned to you by the System Administrator. The name of this shell can be found out

from an entry in the /etc/passwd file. This shell is acting as a middle-man between the

user commands that we type at the shell prompt and the UNIX kernel. The process for

this shell can be seen by typing the ps –f command as follows

[root@shekhar ~]# ps -f

UID PID PPID C STIME TTY TIME CMD

root 5794 5791 0 10:44 pts/0 00:00:00 -bash

root 5814 5794 0 10:44 pts/0 00:00:00 ps -f

As you can see from the above diagram, a process for the “bash” shell is running in the

background. In this case, the PID (a unique number assigned to the process) for the shell

process is 5794.

4.2 .bash_profile is executed

The second thing that happens when you login is that a special file named

.bash_profile automatically gets executed. Every user has this file sitting in his/her

home directory. Home directory is a directory assigned to each user as his/her

home. If you write any UNIX command in this .bash_profile file, it will get executed

everytime you login. Usually commands like “alias” are written in his .bash_profile

file. A sample .bash_profile is show below.

36

Focus Training Services - UNIX Shell Scripting V 1.0

.bash_profile

Get the aliases and functions

if [-f ~/.bashrc]; then

 . ~/.bashrc

fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin

export PATH

alias rm='rm -i'

clear

echo "---"

echo "Welcome $USER"

echo "---"

4.3 You are put in your HOME directory

A HOME directory is a directory is assigned to every user by the System Administrator. You can

find the name of the home of your HOME directory by reading the contents of the /etc/passwd

file. The third thing that happens when a user logs into his/her account is that he/she is

automatically put in his HOME directory. You can check this b typing the “pwd” command

immediately after you login. HOME directory is where the user has the privileges to create any

files or directories.

Welcome root

[root@shekhar ~]# pwd

/root ���� This is your HOME directory

[root@shekhar ~]#

37

Focus Training Services - UNIX Shell Scripting V 1.0

5 Introduction to Shell Programming

5.1 What is shell

Computer understand the language of 0's and 1's called binary language.

In early days of computing, instruction are provided using binary language, which is difficult for

all of us, to read and write.

So in Os there is special program called Shell. Shell accepts your instruction or commands in

English (mostly) and if its a valid command, it is passed to kernel.

Shell is a user program or it's a environment provided for user interaction. Shell is an command

language interpreter that executes commands read from the standard input device (keyboard)

or from a file.

Shell is not part of system kernel, but uses the system kernel to execute programs, create files

etc.

5.2 Shell types

To know which shells are installed on your system type the following command

[root@station60 ~]# cat /etc/shells

/bin/sh

/bin/bash

/sbin/nologin

/bin/tcsh

/bin/csh

/bin/ksh

[root@station60 ~]#

38

Focus Training Services - UNIX Shell Scripting V 1.0

5.2.1 sh or Bourne Shell:

 the original shell still used on UNIX systems and in UNIX-related environments. This is the basic

shell, a small program with few features. While this is not the standard shell, it is still available

on every Linux system for compatibility with UNIX programs.

5.2.2 bash or Bourne Again shell:

the standard GNU shell, intuitive and flexible. Probably most advisable for beginning users

while being at the same time a powerful tool for the advanced and professional user. On Linux,

bash is the standard shell for common users. This shell is a so-called superset of the Bourne

shell, a set of add-ons and plug-ins. This means that the Bourne Again shell is compatible with

the Bourne shell: commands that work in sh, also work in bash. However, the reverse is not

always the case. All examples and exercises in this book use bash.

5.2.3 csh or C shell:

the syntax of this shell resembles that of the C programming language. Sometimes asked for by

programmers.

5.2.4 tcsh or TENEX C shell:

 a superset of the common C shell, enhancing user-friendliness and speed. That is why some

also call it the Turbo C shell.

5.2.5 ksh or the Korn shell:

 sometimes appreciated by people with a UNIX background. A superset of the Bourne shell;

with standard configuration a nightmare for beginning users.

5.3 What is Shell Script ?

Normally shells are interactive. It means shell accept command from you (via keyboard) and

execute them. But if you use command one by one (sequence of 'n' number of commands) , the

you can store this sequence of command to text file and tell the shell to execute this text file

instead of entering the commands. This is know as shell script.

39

Focus Training Services - UNIX Shell Scripting V 1.0

Shell script defined as:

“Shell Script is series of command written in plain text file. Shell script is just like batch file is MS-

DOS but have more power than the MS-DOS batch file."

Shell scripting allows us to use commands we already use at the command line.

We are familiar with the interactive mode of the shell. Almost anything can be done in a script

which can be done at the command line.

5.4 When to write shell scripts

Shell scripting can be applied to a wide variety of system and database tasks.

5.4.1 Repeated Tasks

Necessity is the mother of invention. The first candidates for shell scripts will be manual tasks

which are done on a regular basis.

• Backups

• Log monitoring

• Check disk space

5.4.2 Occasional Tasks

Tasks which are performed rarely enough that their method, or even their need may be

forgotten.

• Periodic business related reports(monthly/quarterly/yearly/daily)

• Offsite backups

• Purging old data

5.4.3 Complex Manual Tasks

Some tasks must be performed manually but may be aided by scripting.

• Checking for database locks

• Killing runaway processes

40

Focus Training Services - UNIX Shell Scripting V 1.0

5.4.4 Special Tasks

These are tasks which would not be possible without a programming language.

• Storing OS information (performance stats, disk usage, etc.) into the database

• High frequency monitoring (several times a day or more)

5.5 Our First Shell Script

use the editor to create the program, for simplicity we'll call hello.sh

 $ vi hello.sh

1. insert the following shell command in the hw file:

#!/bin/bash

echo "Hello World!"

2. save and exit the editor program

3. run the hw program

 $ hello.sh [Enter]

 bash: hello.sh: cannot execute - Permission denied

What is the problem here, and how do we fix it?

4. The problem is that you are not having execute permission on file

so let us give execute permission on this file

$chmod u+x hello.sh

5. once the problem above is fixed, find the path of your script.Suppose in this case the full

path of hello.sh is /home/mahesh/hello.sh now execute the script as follows.

 $ /home/mahesh/hello.sh [Enter]

 Hello World!

41

Focus Training Services - UNIX Shell Scripting V 1.0

#!/bin/bash � This first line indicates what interpreter to use when running this script

The Shebang (#!)

The "shebang" is a special comment. Since it is a comment it will not be executed when the

script is run. Instead before the script is run, the shell calling the script will check for the #!

pattern. If found it will invoke the script using that interpreter. f no #! is found most shells will

use the current shell to run the script.

Since the shells are installed in different locations on different systems you may have to alter

the #! line.

For example, the bash shell may be in /bin/bash, /usr/bin/bash or /usr/local/bin/bash.

Setting the shell explicitly like this assures that the script will be run with the same interpreter

regardless of who executes it (or what their default shell may be.)

42

Focus Training Services - UNIX Shell Scripting V 1.0

6 Shell Variables

The variable is place holder for storing data. The value of the variable can be changed during

the program exucution.

The value assigned could be a number, text, filename, device, or any other type of data.A

variable is nothing more than a pointer to the actual data. The shell enables you to create,

assign, and delete variables.

Shell variables can be used at the command line and/or used within shell programs.

While similar to other programming language variables, shell variables do have some different

characteristics such as:

• shell variables do not need to be declared

• all shell variables are of type string

There are two types of variables

6.1 User defined variables

6.1.1 How to assign value to a variable

Syntax:

variablename=value

'value' is assigned to given 'variable name' and Value must be on right side = sign.

Example:

[mahesh@station60 ~]$no=10 # this is ok

[mahesh@station60 ~]$10=no # Error, NOT Ok, Value must be on

right side of = sign.

43

Focus Training Services - UNIX Shell Scripting V 1.0

To define variable called 'os' having value unix

[mahesh@station60 ~]$os=unix

To define variable called n having value 10

[mahesh@station60 ~]$ n=10

6.1.2 Rules for Naming variable name (Both UDV and System Variable)

(1) Variable name must begin with Alphanumeric character or underscore character (_),

followed by one or more Alphanumeric character. For e.g. Valid shell variable are as follows

HOME

SYSTEM_VERSION

Vechno

(2) Don't put spaces on either side of the equal sign when assigning value to variable. For e.g. In

 following variable declaration there will be no error

$ no=10

But there will be problem for any of the following variable declaration:

$ no =10

$ no= 10

$ no = 10

(3) Variables are case-sensitive, just like filename in Linux. For e.g.

$ no=10

$ No=11

$ NO=20

$ nO=2

Above all are different variable name, so to print value 20 we have to use $ echo $NO and not

any of the following

44

Focus Training Services - UNIX Shell Scripting V 1.0

$ echo $no # will print 10 but not 20

$ echo $No # will print 11 but not 20

$ echo $nO # will print 2 but not 20

(4) You can define NULL variable as follows (NULL variable is variable which has no value at the

time of definition) For e.g.

$ vech=

$ vech=""

Try to print it's value by issuing following command

$ echo $vech

Nothing will be shown because variable has no value i.e. NULL variable.

(5) Do not use ?,* etc, to name your variable names.

6.1.3 How to access the value of variable

 Use a $ to access the value of a variable.

[mahesh@station60 ~]$ echo $a

10

[mahesh@station60 ~]$

6.1.4 Variable are not declared

If we try to access the variable that is not declared the blank line will appear means the value of

that variable is null or not assigned

[mahesh@station60 ~]$ echo $b

[mahesh@station60 ~]$

45

Focus Training Services - UNIX Shell Scripting V 1.0

 In above example note the b is not having any value assigned hence it returns null.

6.1.5 How to capture output of a command in a variable

 Use back quote (`) above the tab key on keyboard) to capture the output of a command in a

variable

[mahesh@station60 ~]$ user=`whoami`

[mahesh@station60 ~]$ echo $user

mahesh

[mahesh@station60 ~]$

there is another way to capture the output of a command to a variable

[mahesh@station60 ~]$ user=$(whoami`)

[mahesh@station60 ~]$ echo $user

mahesh

[mahesh@station60 ~]$

6.1.6 Arithmetic on variables

As mentioned at the beginning of this section, all shell variables are of type string. This might

lead one to conclude that arithmetic using shell variables is not possible because you can't do

arithmetic on strings. Not so fast! The standard tried and true way of doing arithmetic is using

the expr command. In general, expr is used as follows:

expr operand1 operator operand2

Note the spaces on either side of the operator, these are mandatory and a source of frequent

errors. Some of the possible operators include:

 addition +

 subtraction -

 multiplication * # must be written with \ before the *

 (See the example below)

 division /

 modulus %

46

Focus Training Services - UNIX Shell Scripting V 1.0

Thus you can do arithmetic in the shell such as:

$ expr 10 + 2 [Enter] #adding 10 + 2

 12

$ I=10

$ expr $I + 2 [Enter] # same using a variable

 12

$ expr 10 * 2 [Enter] # multiplying by 2

 20

There is an alternative way to performing arithmetic calculations available in some of the newer

shells (e.g. bash, ksh93). This newer method (sometimes referred to as let) uses the following

syntax: $((expression)) .

 For example:

$ echo $((10 + 2)) [Enter] # with spaces around operator

 12

$ echo $((10+2)) [Enter] # without spaces

 12

$ X=10 [Enter]

$ echo $((X + 2)) [Enter] # note no $ on X

 12

6.2 System variables -

Created and maintained by Linux/Unix itself. This type of variable defined in CAPITAL

LETTERS.These variables are generally set using the export command. Some of the commonly

required varibles are as follows.

 PS1 Command prompt

 HOME your home directory

 PWD your present working directory

 LOGNAME your login name

 USER same as login name

 HISTSIZE number of history commands to be stored in history file

 HOSTNAME your host name

 SHELL your login shell

 PPID Process id of parent process

47

Focus Training Services - UNIX Shell Scripting V 1.0

6.2.1 PATH variable:

PATH variable simply hold the path of your system.When we type any command on prompt

cheks the executable in path of the system for excution of the command.If it doesn't get the

path it displays error as command not found.

See how to set a path variable.

[mahesh1@station60 ~]$ echo $PATH

/lib/qt3/bin:/usr/kerberos/bin:/usr/local/bin:/usr/bin:

/opt/real/RealPlayer:/home/mahesh1/bin:/bin

the above command will displays the path of your sysem observe the bin is present in current

path.

Now type the following command

[mahesh1@station60 ~]$ which ls

/bin/ls

[mahesh1@station60 ~]$

which command tells the path of ls command i.e .ls command's executable code is stored on

bin directory and since the /bin set in path variable we can execute the ls command

successfully.

[mahesh1@station60 ~]$ ls

a.txt case.sh for.sh hello.sh hello.txt if.sh

[mahesh1@station60 ~]$

now remove the /bin from path as follows

[mahesh1@station60]$PATH=/lib/qt3/bin:/usr/kerberos/bin:/usr/loc

al/bin:/usr/bin:/opt/real/RealPlayer:/home/mahesh1/bin

now /bin is not present in path hence we can not execut the ls command.

[mahesh1@station60 ~]$ ls

-bash: ls: command not found

[mahesh1@station60 ~]$ ls

48

Focus Training Services - UNIX Shell Scripting V 1.0

now set your path variable as it is you will be able to execut the ls command .

By assigning path of your shell script you can execut without giving full path like an executable

 command.

6.3 All about quotes

6.3.1 Backslash

The backslash character (\) has two uses (note this differs from the frontslash (/) character).

The first use is for line continuation. If a line of shell commands becomes exceedingly long, it

may be useful to continue it across more than one line. Note that if you choose to do this, the

split cannot be in the middle of a word, it must be done in appropriate whitespace.

The second (and perhaps more useful) use of the backslash character is to remove the special

meaning of the following single character. This is sometimes referred to as escaping the special

meaning of the following character. Characters that have special meaning are referred to as

metacharacters (there are many of these in Unix). We saw in the previous section that

performing multiplication using expr required the \ to be used before the * character. This is

because the * is a metacharacter, and without using the backslash to remove its special

meaning, an error would result. For example, if we wanted to output a statement to describe

the use of the $? variable, we could try and observe:

$ echo The $? variable returns the child exit status [Enter]

 The 0 variable returns the child exit status

where what we really want is:

$ echo The \$? variable returns the child exit status [Enter]

 The $? variable returns the child exit status

6.3.2 Back Quotes

The back quotation mark character (i.e. `) when used in pairs enclosing a command serve to

perform command substitution. That is, when used as follows:

 `command`

the output of command is substituted at the location of the leftmost backquote. Note that

these are not the same character as the single quote mark. For example, if we wanted to

output:

 My current directory is: current directory location

we could try the following:

49

Focus Training Services - UNIX Shell Scripting V 1.0

echo My current directory is: pwd [Enter]

But this would result in:

 My current directory is: pwd

To achieve what we wish, we could use back quotes as follows:

 $ echo My current directory is: `pwd` [Enter]

 My current directory is: /home/mthomas

Note the / in /home is substituted exactly at the location of the leftmost backquote. We can

also perform assignment using the backquote characters, for example:

$ CUR_DIR=`pwd` [Enter] # note no spaces around the =

or with respect to the expr command:

 $ I=10 [Enter]

 $ I=`expr $I + 1` [Enter]

 $ echo $I [Enter]

 11

An alternative notation for command substitution (present in more modern shells) is the

$(command) syntax. This enables one do the following:

$ echo My current directory is: $(pwd) [Enter]

 My current directory is: /home/mthomas

1 Technically, a single one of these is called a grave accent, but are sometimes informally

referred to as backticks, or back tick marks.

6.3.3 Single Quotes

Single quotes (not to be confused with the back quotes) serve to remove (escape) the special

meaning of all characters enclosed by them. Thus, the following statement would work as

follows:

 $ echo 'My current directory is: `pwd`' [Enter]

 My current directory is: `pwd`

50

Focus Training Services - UNIX Shell Scripting V 1.0

6.3.4 Double Quotes

Double quotes or front quotes (again, not to be confused with the back quotes or single quotes)

serve to remove (escape) the special meaning of all characters enclosed by them, except for the

$ (dollar sign) character, the \ (backslash) character, and the ` (back quote character). Thus, the

following statement would work as follows:

$ CUR_DIR=`pwd` [Enter]

$ echo "My current directory is: $CUR_DIR" [Enter]

 My current directory is: /home/mthomas

Note that with single quotes in this example, the value stored in the $CUR_DIR variable would

not be displayed. It is the practice of the author to always enclose text and variables within

double quotes, and escape any special characters using the backslash.

Note that if any pair of quotes is unmatched (missing either of the quotes), a situation may

arise where a command results in single greater than (>) character displayed follows:

 $ echo "My current directory is: $CUR_DIR [Enter]

The > character in this instance is the shell environment variable named PS2 (prompt string 2).

Do not confuse this with an output redirection character (see next section). When this occurs,

the shell is trying to parse the command entered and is missing one or more characters it needs

to complete its parsing. If you understand what is missing, you may be able to recover at the >

prompt by typing the characters missing. Otherwise, you may want to punt with a [Ctrl-c]

sequence.

51

Focus Training Services - UNIX Shell Scripting V 1.0

7 Additional commands for our shell script

7.1 tar

tar command background

The name "tar" stands for "tape archive". As the name implies, in the old days it was a

command that Unix administrators used to deal with tape drives. Where we now use the Linux

tar command to create a tar file, we used to tell it to write the tar archive to a device file

(in dev).

These days the Linux tar command is more often used to create compressed archives that can

easily be moved around, from disk to disk, or computer to computer. One user may archive a

large collection of files, and another user may extract those files, with both of them using the

tar command.

7.1.1 Linux tar command - Create an archive of a subdirectory

A common use of the Linux tar command is to create an archive of a subdirectory. For instance,

assuming there is a subdirectory named MyProject in the current directory, you can use tar to

create an uncompressed archive of that directory with this command:

tar -cvf MyProject.20090816.tar MyProject

where MyProject.20090816.tar is the name of the archive (file) you are creating, and MyProject

is the name of your subdirectory. It's common to name an uncompressed archive with the .tar

file extension.

In that command, I used three options to create the tar archive:

• The letter c means "create archive".

• The letter v means "verbose", which tells tar to print all the filenames as they are added

to the archive.

• The letter f tells tar that the name of the archive appears next (right after these

options).

The v flag is completely optional, but I usually use it so I can see the progress of the command.

The general syntax of the tar command when creating an archive looks like this:

tar [flags] archive-file-name files-to-archive

52

Focus Training Services - UNIX Shell Scripting V 1.0

7.1.2 Linux tar command with gzip - Creating a compressed archive

You can compress a tar archive with the gzip command after you create it, like this:

gzip MyProject.20090816.tar

This creates the file MyProject.20090816.tar.gz.

But these days it's more common to create a gzip'd tar archive with one tar command, like this:

tar -czvf MyProject.20090816.tgz MyProject

As you can see, I added the 'z' flag there (which means "compress this archive with gzip"), and I

changed the extension of the archive to .tgz, which is the common file extension for files that

have been tar'd and gzip'd in one step.

7.1.3 Creating a compressed archive of the current directory

Many times when using the Linux tar command you will want to create an archive of all files in

the current directory, including all subdirectories. You can easily create this archive like this:

tar -czvf mydirectory.tgz .

In this tar example, the '.' at the end of the command is how you refer to the current directory.

 tar command example - creating an archive in a different directory

You may also want to create a new tar archive like that previous example in a different

directory, like this:

tar -czvf /tmp/mydirectory.tar.gz .

As you can see, you just add a path before the name of your tar archive to specify what

directory the archive should be created in.

7.1.4 tar list example - Listing the contents of a tar archive

To list the contents of an uncompressed tar archive, just replace the c flag with the t flag, like

this:

tar -tvf my-archive.tar

53

Focus Training Services - UNIX Shell Scripting V 1.0

This lists all the files in the archive, but does not extract them.

To list all the files in a compressed archive, add the z flag like before:

tar -tzvf my-archive.tar.gz

That same command can also work on a file that was tar'd and gzip'd in two separate steps (as

indicated by the .tar.gz file extension):

tar -tzvf my-archive.tar.gz

I almost always list the contents of an unknown archive before I extract the contents. I think

this is always good practice, especially when you're logged in as the root user.

7.1.5 tar extract example - extracting an archive

To extract the contents of a Linux tar archive, now just replace the t flag with the x ("extract")

flag. For uncompressed archives the extract command looks like this:

tar -xvf my-archive.tar

For compressed archives the tar extract command looks like this:

tar -xzvf my-archive.tar.gz

or this:

tar -xzvf my-archive.tar.gz

Additional information

Keep the following in mind when using the tar command:

• The order of the options sometimes matters. Some versions of tar require that the f

option be immediately followed by a space and the name of the tar file being created or

extracted.

• Some versions require a single dash before the option string (e.g., -cvf).

Krish
Highlight

54

Focus Training Services - UNIX Shell Scripting V 1.0

7.2 The read Statement

Use to get input (data from user) from keyboard and store (data) to variable.

Syntax:

read variable 1 variable2 ...variableN

Following script first ask user, name and then waits to enter name from the

user via keyboard. Then user enters name from keyboard (after giving name

you have to press ENTER key) and entered name through keyboard is stored (assigned) to

variable fname.

$ vi read.sh

#Script to read your name from key-board

echo "Your first name please:"

read fname

echo "Hello $fname, Lets be friend!"

Run it as follows:

$ chmod 755 hello.sh

$./sayH

Your first name please: vivek

Hello vivek, Lets be friend!

55

Focus Training Services - UNIX Shell Scripting V 1.0

8 Command Line Arguments & Special

Variables

We can accept user input by using the read command that waits to take value from user .There

is another way to send a input to shell script called as command line arguments.

In the example below, the name of the shell program is my_script, and the first positional

parameter (named 1) has the value within the script of arg1, the second variable the value of

arg2, etc.

Thus, if we wish to see the value stored in the first postional parameter, we could do the

following from within the my_script program (note that this only works from within the

my_script program):

 echo $1

 arg1

Positional parameters provide the programmer with a powerful way to "pass data into" a shell

program while allowing the data to vary. If we had a shell program named hello that contained

the following statement:

 echo Hello Fred! How are you today?

this would not be very interesting to run, unless perhaps your name was Fred. However if the

program was modified like this:

 echo "Hello $1! How are you today?"

This would allow us to pass single data values "into" the program via positional parameters as

illustrated in the following diagram:

56

Focus Training Services - UNIX Shell Scripting V 1.0

We could then run the program as follows, using varying values to pass into the positional

variable $1.

 $ hello Fred [Enter]

 Hello Fred! How are you today?

 $ hello Barney [Enter]

 Hello Barney! How are you today?

It should be obvious that this would be a much more useful program. Keep in mind that many

behaviors of standard variables are also behaviors of positional variables. For example, if you

did not assign a value to the first positional variable, you would not get an error, rather

behavior as follows:

 $ hello [Enter]

 Hello ! How are you today?

Similarly, if there are more command line arguments than positional variables, the extra

arguments are simply ignored, for example:

$ hello Fred Barney Dino [Enter]

 Hello Fred! How are you today?

Special Parameters $* and $@:

There are special parameters that allow accessing all of the command-line arguments at once.

$* and $@ both will act the same unless they are enclosed in double quotes, "".

Both the parameter specifies all command-line arguments but the "$*" special parameter takes

the entire list as one argument with spaces between and the "$@" special parameter takes the

entire list and separates it into separate arguments.

57

Focus Training Services - UNIX Shell Scripting V 1.0

We can write the shell script shown below to process an unknown number of command-line

arguments with either the $* or $@ special parameters:

The following table shows a number of special variables that you can use in your shell scripts:

Variable Description

$0 The filename of the current script.

$n

These variables correspond to the arguments with which

a script was invoked. Here n is a positive decimal

number corresponding to the position of an argument

(the first argument is $1, the second argument is $2,

and so on).

$# The number of arguments supplied to a script.

$*
All the arguments are double quoted. If a script

receives two arguments, $* is equivalent to $1 $2.

$@

All the arguments are individually double quoted. If a

script receives two arguments, $@ is equivalent to $1

$2.

$? The exit status of the last command executed.

$$

The process number of the current shell. For shell

scripts, this is the process ID under which they are

executing.

$! The process number of the last background command.

Why Command Line arguments required

 1. Telling the command/utility which option to use.

 2. Informing the utility/command which file or group of files to process (reading/writing of

files).

Let's take rm command, which is used to remove file, but which file you want to remove and

how you will tell this to rm command (even rm command don't ask you name of file that you

would like to remove). So what we do is we write command as follows:

58

Focus Training Services - UNIX Shell Scripting V 1.0

$ rm {filename}

Here rm is command and filename is file which you would like to remove. This way you tail rm

command which file you would like to remove. So we are doing one way communication with

ourcommand by specifying filename. Also you can pass command line arguments to your script

to make itmore users friendly. But how we access command line argument in our script.

Lets take ls command

$ ls -a /*

This command has 2 command line argument -a and /* is another. For shell script,

$ myshell foo bar

 Shell Script name i.e. myshell

 First command line argument passed to myshell i.e. foo

 Second command line argument passed to myshell i.e. bar

In shell if we wish to refer this command line argument we refer above as follows

 myshell it is $0

 foo it is $1

 bar it is $2

Here $# (built in shell variable) will be 2 (Since foo and bar only two Arguments), Please note at

a time such 9 arguments can be used from $1..$9, You can also refer all of them by using $*

(which expand to`$1,$2...$9`). Note that $1..$9 i.e command line arguments to shell script is

know as "positional parameters".

Following script is used to print command ling argument and will show you how to access them:

$ vi demo

59

Focus Training Services - UNIX Shell Scripting V 1.0

#!/bin/bash

Script that demos, command line args

echo "Total number of command line argument are $#"

echo "$0 is script name"

echo "$1 is first argument"

echo "$2 is second argument"

echo "All of them are :- $* or $@"

$ vi isnump_n

60

Focus Training Services - UNIX Shell Scripting V 1.0

9 Exit Status:

The $? variable represents the exit status of the previous command.

Exit status is a numerical value returned by every command upon its completion. As a rule,

most commands return an exit status of 0 if they were successful, and other than o (most of the

time 1)if they were unsuccessful.

Some commands return additional exit statuses for particular reasons. For example, some

commands differentiate between kinds of errors and will return various exit values depending

on the specific type of failure.

Following is the example of successful command:

[mahesh1@station60 ~]$ ls

a.txt case.sh for.sh hello.sh hello.txt if.sh

[mahesh1@station60 ~]$ echo $?

0

[mahesh1@station60 ~]$

Following is example of unsucessful command

[mahesh1@station60 ~]$ cat abcd

cat: abcd: No such file or directory

[mahesh1@station60 ~]$

echo $?

1

[mahesh1@station60 ~]$

61

Focus Training Services - UNIX Shell Scripting V 1.0

10 Advanced UNIX commands(Filters)

A filter is a Unix command that does some manipulation of the text of a file

Filters are commands that alter data passed through them, typically via pipes. Some filters can

be used on their own (without pipes), but the true power to manipulate streams of data to the

desired output comes from the combination of pipes and filters. Summarized below are some

of the more useful Unix filters.

10.1 head

head command is used to display starting portion of the file. By default head command displays

the top 10 lines of file.

[root@station60 ~]# head /etc/passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

news:x:9:13:news:/etc/news:

 [root@station60 ~]#

62

Focus Training Services - UNIX Shell Scripting V 1.0

We can override the default behaviour of the head command as follows

[root@station60 ~]# head -5 /etc/passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

[root@station60 ~]#

Note :Instead of 5 we can give any number regardless of it is less or greater than 10.

10.2 Tail

tail command works exactly opposite of the head.It displays the ending portion of file.By

default it also displays the 10 lines from the file we can override the behaviour as follows.

[root@station60 ~]# tail -3 /etc/passwd

raj:x:7276:7276::/home/raj:/bin/bash

ram:x:7277:7277::/home/ram:/bin/bash

suhas:x:7278:7278::/home/suhas:/bin/bash

[root@station60 ~]#

63

Focus Training Services - UNIX Shell Scripting V 1.0

suppose I want to retrive a line on particular position from the file then combination of head

and tail commands can be used as follows

[root@station60 ~]# cat /etc/passwd|head -50|tail -1

mahesh:x:523:501::/home/mahesh:/bin/bash

[root@station60 ~]#

in above the 50th line from /etc/passwd file will be displayed.

10.3 wc

In Unix, to get the line, word, or character count of a document, use the wc command. At the

Unix shell prompt.

wc filename Replace file name with the file or files for which we want information. For each file,

wc will output three numbers.

The first is the line count, the second the word count, and the third is the character count.

For example, If we entered

[root@station60 ~]# wc login

the output would be something similar to the following:

38 135 847 login

64

Focus Training Services - UNIX Shell Scripting V 1.0

To narrow the focus of your query, we may use one or more of the following wc options:

 Option Entities counted

 -c bytes

 -l lines

 -m characters

 -w words

Note: In some versions of wc, the -m option will not be available or -c will report characters.

However, in most cases, the values for -c and -m are equal.

Syntax:

To count the characters in a file. Here it counts the no of characters in the file abc.txt

 $ Wc –c / abc.txt

For example, to find out how many bytes are in the .login file, we could enter:

 $ wc -c .login

We may also pipe standard output into wc to determine the size of a stream. For example, to

find out how many files are in a directory, enter:

 /bin/ls -l | wc -l

65

Focus Training Services - UNIX Shell Scripting V 1.0

10.4 Sort

sort is a standard Unix command line program that prints the lines of its input or concatenation

of all files listed in it's argument list in sorted order. The r flag will reverse the sort order.

1) By default sort command sorts in ascending order

Examples:

$ cat phonebook

Smith,Brett 5554321

Doe,John 5551234

Doe,Jane 5553214

Avery,Cory 5554321

Fogarty,Suzie 5552314

$ cat phonebook | sort

Avery,Cory 5554321

Doe,Jane 5553214

Doe,John 5551234

Fogarty,Suzie 5552314

Smith,Brett 5554321

1) The n option makes the program to sort according to

numerical value:

66

Focus Training Services - UNIX Shell Scripting V 1.0

$ du /bin/* | sort n

4 /bin/domainname

4 /bin/echo

4 /bin/hostname

4 /bin/pwd

...

24 /bin/ls

30 /bin/ps

44 /bin/ed

54 /bin/rmail

80 /bin/pax

102 /bin/sh

304 /bin/csh

2) If the first column of file does not contains numerical data then it will not sort according to

numbers we have to provide the position of column by using k option

$cat student.txt

harsh 10

mahesh 5

uday 55

$sort student.txt nk2

mahesh 5

harsh 10

uday 5 5

3) k will work when there the column seprator is space. If the delimiter is other than space

then use t option

67

Focus Training Services - UNIX Shell Scripting V 1.0

$cat student.txt

harsh:10

mahesh:5

uday:55

$sort student.txt -t”:” -nk2

mahesh:5

harsh:10

uday:55

4) The r option just reverses the order of the sort:

$ cat zipcode | sort r

Joe 56789

Sam 45678

Bob 34567

Wendy 23456

68

Focus Training Services - UNIX Shell Scripting V 1.0

10.5 cut

cut is a Unix command which is typically used to extract a certain range of characters from a

line, usually from a file.

Syntax

cut [c][flist] [ddelim] [file]

Flags which may be used include

$cat company.data

406378:Sales:Itorre:Jan

031762:Marketing:Nasium:Jim

636496:Research:Ancholie:Mel

396082:Sales:Jucacion:Ed

-c Characters: a list following c specifies a range of characters which will be returned,

Examples:

1) If you want to print just columns 1 to 6 of each line (the employee serial numbers), use

the c16 flag, as in this command:

$cut -c1,6 company.data

406378

031762

636496

396082

1) If you want to print just columns 4 and 8 of each line(the first letter of the department and

the fourth digit of the serial number), use the c4,8 flag, as in this command:

69

Focus Training Services - UNIX Shell Scripting V 1.0

$cut -c4,8 company.data

3S

7M

4R

0S

-f Specifies a field list, separated by a delimiter list A comma separated or blank separated list

of integer denoted fields, incrementally ordered.

The indicator may be supplied as shorthand to allow inclusion of ranges of fields

-d Delimiter the character immediately following the d option is the field delimiter for use in

conjunction with the -f option the default delimiter is tab. Space and other characters with

special meanings within the context of the shell in use must be enquoted or escaped

as necessary.And since this file obviously has fields delimited by colons, we can pick out just the

last names by specifying the d and f3 flags, like this:

Examples using d and f options

1) If you want to access single field.

$cut -d”:” -f3 company.data

Itorre

Nasium

Ancholie

Jucacion

70

Focus Training Services - UNIX Shell Scripting V 1.0

2) If you want to access multiple fields.

$cut -d”:” -f1,3 company.data

406378:Itorre

031762:Nasium

636496:Ancholie

396082:Jucacion

10.6 paste

Paste is a Unix utility tool which is used to join files horizontally (parallel merging), e.g. to join

two similar length files which are comma delimited. It is effectively the horizontal equivalent to

the utility cat command which operates on the vertical plane of two (or more) files, i.e. by

adding one file to another in order.

Example

To paste several columns of data together, enter:

$ paste who where when > www

This creates a file named www that contains the data from the names file in one column, the

places file in another,and the dates file in a third. If the names, places, and dates file look like:

 who where when

 Sam Detroit January 3

 Dave Edgewood February 4

 Sue Tampa March 19

71

Focus Training Services - UNIX Shell Scripting V 1.0

then the www file will contain:

 Sam Detroit January 3
 Dave Edgewood February 4

 Sue Tampa March 19

10.7 grep

"grep" one of the most frequently used TEXT PROCESSING TOOLS stands for "Global Regular

Expression Print".

grep command searches the given file for lines containing a match to the given strings or words.

By default, grep prints the matching lines. Use grep to search for lines of text that match one or

many regular expressions, and outputs only e the matching lines.

1) If you want to count of a particular word in log file

you can use grep c option to count the word.

Below command will print how many times word "Error" has

appeared in logfile.txt

grep -c "Error" logfile.txt

2) Sometime we are not just interested on matching line but also on lines around

matching lines particularly useful to see what happens before any Error or

Exception. grep –context option allows us toprint lines around matching pattern. Below

example of grep command in UNIX will print 6 lines around matching line of word

"successful" in logfile.txt

grep --context=6 successful logfile.txt

Show additional six lines after matching very useful to see what is around and to print whole

message if it splits around multiple lines.

You can also use command line option "C" instead of "context" for example

72

Focus Training Services - UNIX Shell Scripting V 1.0

grep -C 'hello' logfile

Prints two lines of context around each matching line.

3) If you want to do case insensitive search than use i

option from grep command in UNIX. Grep I will find occurrence of both Error, error and

ERROR and quite useful to display any sort of Error u from log file.

grep -i Error logfile

4) Use grep -o command in UNIX if you find whole word instead of just pattern.

grep -o ERROR logfile

Above grep command in UNIX searches only for instances of 'ERROR' that are entire

words; it does not match

5) Another useful grep command line option is "grep -l"

which display only the file names which matches the given pattern. Below command will

only display file names which have ERROR?

grep -l ERROR logfile

grep -l 'main' *.java

will list the names of all Java files in the current directory whose contents mention`main'.

73

Focus Training Services - UNIX Shell Scripting V 1.0

6) If you want to see line number of matching lines you can use option "grep -n" below

command will show on which lines w Error has appeared.

grep -n ERROR logfile

7) grep command in UNIX can show matching pattern in color which is quite useful to

highlight the matching section , to see matching pattern in color use below

command.

 grep Exception today.log --color

74

Focus Training Services - UNIX Shell Scripting V 1.0

11 I/O Redirection and Pipes

Abstract

This chapter describes more about the powerful UNIX mechanism of redirecting input, output

and errors. Topics include:

• Standard input, output and errors

• Redirection operators

• How to use output of one command as input for another

• How to put output of a command in a file for later referrence

• How to append output of multiple commands to a file

• Input redirection

• Handling standard error messages

• Combining redirection of input, output and error streams

• Output filters

11.1 What are standard input and standard output?

Most Uinux commands read input, such as a file or another attribute for the command, and

write output. By default, input is being given with the keyboard, and output is displayed on your

screen. Your keyboard is your standard input (stdin) device, and the screen or a particular

terminal window is the standard output (stdout) device.

Commands typically get their input from a source referred to as standard input (stdin) and

typically display their output to a destination referred to as standard output (stdout) as

pictured below:

75

Focus Training Services - UNIX Shell Scripting V 1.0

As depicted in the diagram above, input flows (by default) as a stream of bytes from standard

input along a channel, is then manipulated (or generated) by the command, and command

output is then directed to the standard output.

The ls command can then be described as follows; there is really no input (other than the

command itself) and the ls command produces output which flows to the destination of stdout

(the terminal screen), as below:

11.2 The redirection operators

11.2.1 Output redirection with > and |

Sometimes you will want to put

1) output of a command in a file, or

2) You may want to issue another command on the output of one command.

This is known as redirecting output. Redirection is done using either the “>” (greater-than

symbol), or using the “|” (pipe) operator.

The simplest case to demonstrate this is basic output redirection . The general syntax looks as

follows:

command > output_file_spec

76

Focus Training Services - UNIX Shell Scripting V 1.0

Spaces around the redirection operator are not mandatory, but do add readability to the

command. Thus in our ls example from above, we can observe the following use of output

redirection:

$ ls > my_files [Enter]

$

Notice there is no output appearing after the command, only the return of the prompt. Why is

this, you ask? This is because all output from this command was redirected to the file my_files.

Observe in the following diagram, no data goes to the terminal screen, but to the file instead.

Examining the file as follows results in the contents of the my_files being displayed:

$ cat my_files [Enter]

 foo

 bar

 fred

 barney

 dino

$

77

Focus Training Services - UNIX Shell Scripting V 1.0

In this example,

• if the file my_files does not exist, the redirection operator causes its creation, and

• if it does exist, the contents are overwritten.

Consider the example below:

$ echo "Hello World!" > my_files [Enter]

$ cat my_files [Enter]

 Hello World!

Notice here that the previous contents of the my_files file are gone, and replaced with the

string "Hello World!" This might not be the most desirable behavior, so the shell provides us

with the capability to append output to files.

11.2.2 The append operator is the >>.

Thus we can do the following:

$ ls > my_files [Enter]

 $ echo "Hello World!" >> my_files [Enter]

 $ cat my_files [Enter]

 foo

 bar

 fred

 barney

 dino

 Hello World!

78

Focus Training Services - UNIX Shell Scripting V 1.0

From the above Example:

• When using the append redirection operator,

• If file exist it will append to the existing file

• if the file does not exist, >> will cause its creation and ,

• append the output (to the empty file).

11.3 Input Redirection

You use input redirection using the ‘<’ less-than symbol and it is usually used with a program

which accepts user input from the keyboard.

The general syntax of input redirection looks as follows:

command < input_file_spec

Examples:

1. A legendary use of input redirection that I have come across is mailing the contents of a text

file to another user.

$ mail mike@somewhere.org < mail_contents.txt

If the user mike exists on the system, you don't need to type the full address. If you want to

reach somebody on the Internet, enter the fully qualified address as an argument to mail.

79

Focus Training Services - UNIX Shell Scripting V 1.0

2. Looking in more detail at this, we will use the wc (word count) command. The wc command

counts the number of bytes, word and lines in a file. Thus if we do the following using the

file created above, we see:

$ wc my_files [Enter]

6 7 39 my_files

where the output indicates 6 lines, 7 words and 39 bytes, followed by the name of the file wc

opened.

We can also use wc in conjunction with input redirection as follows:

$ wc < my_files [Enter]

 6 7 39

Note here that the numeric values are as in the example above, but with input redirection, the

file name is not listed. This is because the wc command does not know the name of the file,

only that it received a stream of bytes to count.

11.4 Combining redirections

Someone will certainly ask if input redirection and output redirection can be combined, and the

answer is most definitely yes. They can be combined in following situation:

Suppose you want to find the exact number of lines, number of words and characters

respectively in a text file and at the same time you want to write it to another file. This is

achieved using a combination of input and output redirection symbols as follows:

$ wc < my_text_file.txt > output_file.txt

Krish
Highlight

80

Focus Training Services - UNIX Shell Scripting V 1.0

What happens above is the contents of the file my_text_file.txt are passed to the command

'wc' whose output is in turn redirected to the file output_file.txt

11.5 Advanced redirection features

11.5.1 Use of file descriptors

There are three types of I/O, which each have their own identifier, called a file descriptor:

• standard input : 0

• standard output : 1

• standard error : 2

The diagram below clears the concept

In the following descriptions,

• if the file descriptor number is omitted, and the first character of the redirection

operator is <, the redirection refers to the standard input (file descriptor 0).

• If the first character of the redirection operator is >, the redirection refers to the

standard output (file descriptor 1).

• For redirecting a error you can’t omitte the descriptor i.e. you have to write error

redirection descriptor as follows.

81

Focus Training Services - UNIX Shell Scripting V 1.0

82

Focus Training Services - UNIX Shell Scripting V 1.0

11.6 Syntax of error redirection:

command 2> output_file_spec

Thus to show an example, we observe the following:

$ cat foo bar 2> error_file [Enter]

 Hello from foo file

$ cat error_file [Enter]

 cat: bar: No such file or directory

Note here that only the standard output appears once the standard

error stream is redirected into the file named error_file,

and when we display the contents of error_file, it contains what was previously displayed on

the termimal. To show another example:

$ ls foo bar > foo_file 2> error_file [Enter]

$

$ cat foo_file [Enter]

Hello from foo file

$ cat error_file [Enter]

cat: bar: No such file or directory

83

Focus Training Services - UNIX Shell Scripting V 1.0

In this case both stdout and stderr were redirected to file, thus no output was sent to the

terminal. The contents of each output file was what was previously displayed on the screen.

Note there are numerous ways to combine input, output and error redirection.

Another relevant topic that merits discussion here is the special file named /dev/null

(sometimes referred to as the "bit bucket").

This virtual device discards all data written to it, and returns an End of File (EOF) to any process

that reads from it. I informally describe this file as a "garbage can/recycle bin" like thing, except

there's no bottom to it. This implies that it can never fill up, and nothing sent to it can ever be

retrieved. This file is used in place of an output redirection file specification, when the

redirected stream is not desired. For example, if you never care about viewing the standard

output, only the standard error channel, you can do the following:

$ cat foo bar > /dev/null [Enter]

 cat: bar: No such file or directory

In this case, successful command output will be discarded. The /dev/null file is typically used as

an empty destination in such cases where there is a large volume of extraneous output, or

cases where errors are handled internally so error messages are not warranted.

One final miscellaneous item is the technique of combining the two output streams into a single

file. This is typically done with the 2>&1 command, as follows:

$ cat foo bar > /dev/null 2>&1 [Enter]

$

Here the leftmost redirection operator (>) sends stdout to /dev/null and the 2>&1 indicates

that channel 2 should be redirected to the same location as channel 1, thus no output is

returned to the terminal.

84

Focus Training Services - UNIX Shell Scripting V 1.0

85

Focus Training Services - UNIX Shell Scripting V 1.0

11.7 Here Document

<< redirects the standard input of the command to read from what is called a "here document".

Here documents are convenient ways of placing several lines of text within the script itself, and

using them as input to the command. The << Characters are followed by a single word that is

used to indicate the end of file word for the Here Document. Anyword can be used, however

there is a common convention of using EOF (unless we need to include that word within your

here document).

Example:1 The following example creates a file userlist.txt without waiting for user,after

running a file auto_file.sh.

$Vim auto_file.sh

$ cat > userlist.txt << EOF

bravo

delta

alpha

chrlie

EOF

Example:2 Download file from ftp server automatically using here

document

$vim auto_ftp.sh

ftp –ivn 172.24.0.254 <<EOF

quote USER anonymous

quote PASS redhat

cd pub

get test

quit

EOF

86

Focus Training Services - UNIX Shell Scripting V 1.0

Example 3: Login to oracle database crete a report using select query spool that report into a

file and mail that file to Manager.

$vim report.sh

sqlplus username/password <<EOF

spool report.txt

select e.employee_id,e.last_name,d.department_name,e.salary

FROM employees e join departments d

ON e.department_id=d.department_id;

spool off

EOF

mail –s “Salary Report” manager@focustraining.in < report.txt

2.1.1 Redirection Summary

Redirection Operator Resulting Operation

 command > file
 stdout written to file, overwriting if file

exists

 command >> file
 stdout written to file, appending if file

exists

 command < file input read from file

 command 2> file
 stderr written to file, overwriting if file

exsits

 command 2>> file
 stderr written to file, appending if file

exists

 command > file 2>&1
 stdout written to file, stderr written to

same file descriptor

Command << eof

Eof

The lines after eof are considered as input to

the command

87

Focus Training Services - UNIX Shell Scripting V 1.0

11.8 Pipe Operator

A concept closely related to I/O redirection . The pipe operator is the | character (typically

located above the enter key).

In computer programming, especially in UNIX operating systems, a pipe is a technique for

passing information from one program process to another in the following way.

Unlike other forms of interprocess communication (IPC), a pipe is one-way communication only.

Basically, a pipe passes a parameter such as the output of one process to another process

which accepts it as input. The system temporarily holds the piped information until it is read by

the receiving process.

The UNIX domain sockets (UNIX Pipes) are typically used when communicating between two

processes running in the same UNIX machine. UNIX Pipes usually have a very good throughput.

We can look at an example of pipes using the who and the wc commands. Recall that the who

command will list each user logged into a machine, one per line as follows:

$ who [Enter]

 mthomas pts/2 Oct 1 13:07

 fflintstone pts/12 Oct 1 12:07

 wflintstone pts/4 Oct 1 13:37

 brubble pts/6 Oct 1 13:03

88

Focus Training Services - UNIX Shell Scripting V 1.0

Also recall that the wc command counts characters, words and lines. Thus if we connect the

standard output from the who command to the standard input of the wc (using the -l (ell)

option), we can count the number of users on the system:

$ who | wc -l [Enter]

4

In the first part of this example, each of the four lines from the who command will be "piped"

into the wc command, where the -l (ell) option will enable the wc command to count the

number of lines.

While this example only uses two commands connected through a single pipe operator, many

commands can be connected via multiple pipe operators

89

Focus Training Services - UNIX Shell Scripting V 1.0

Command using Pipes Meaning or Use of Pipes

$ who | sort

Output of who command is given

as input to sort command So

that it will print sorted list

of users

$ who | sort > user_list

Same as above except output of

sort is send to (redirected)

user_list file

$ who | wc -l

Output of who command is given

as input to wc command So that

it will number of user who

logon to system

$ ls -l | wc -l

Output of ls command is given

as input to wc command So that

it will print number of files

in current directory.

$ who | grep raju

Output of who command is given

as input to grep command So

that it will print if

particular user name if he is

logon or nothing is printed (To

see particular user is logon or

not)

90

Focus Training Services - UNIX Shell Scripting V 1.0

12 Control Statements

While writing a shell script, there may be a situation when you need to adopt one path out of

the given two paths. So you need to make use of conditional statements that allow your

program to make correct decisions and perform right actions.

Unix Shell supports conditional statements which are used to perform different actions based

on different conditions. Here we will explain following two decision making statements:

• The if...else statements

• The case...esac statement

12.1 Operators

12.1.1 For Mathematics, or numerical comparision use following

Operators in Shell Script
Mathematical

Operator in

Shell

Script

Meaning

Normal

Arithmetical/

Mathematical

Statements

But In Shell

-eq is equal to 5 == 6
If [5 -eq 6]

-ne is not equal to 5 != 6
If [5 -ne 6]

-lt is less than 5 < 6
If [5 -lt 6]

-le
is less than or

equal to
5 <= 6

If [5 -le 6]

-gt is greater than 5 > 6
If [5 -gt 6]

-ge
is greater than

or equal to
5 >= 6

If [5 -ge 6]

91

Focus Training Services - UNIX Shell Scripting V 1.0

12.2 String Operators:

There are following string operators supported by Bourne Shell.

Assume variable a holds "abc" and variable b holds "efg" then:

Operator Description Example

= Checks if the value of two

operands are equal or not, if yes

then condition becomes true.

[$a = $b] is not

true.

!= Checks if the value of two

operands are equal or not, if

values are not equal then

condition becomes true.

[$a != $b] is

true.

-z Checks if the given string

operand size is zero. If it is

zero length then it returns true.

[-z $a] is not

true.

-n Checks if the given string

operand size is non-zero. If it

is non-zero length then it

returns true.

[-z $a] is not

false.

str Check if str is not the empty

string. If it is empty then it

returns false.

[$a] is not false.

12.3 File test operators

Operator Discription Example

-r file Checks if file is readable if yes then

condition becomes true.

[-r $file]

is true.

-w file Check if file is writable if yes then

condition becomes true.

[-w $file]

is true.

-x file Check if file is execute if yes then

condition becomes true.

[-x $file]

is true.

-s file Check if file has size greater than 0 if

yes then condition becomes true.

[-s $file]

is true.

-e file Check if file exists. Is true even if

file is a directory but exists.

[-e $file]

is true.

-f file Check if file is an ordinary file as

opposed to a directory or special file if

[-f $file]

is true.

92

Focus Training Services - UNIX Shell Scripting V 1.0

yes then condition becomes true.

93

Focus Training Services - UNIX Shell Scripting V 1.0

12.4 The if...else statements:

If else statements are useful decision making statements which can be used to select an option

from a given set of options.

Unix Shell supports following forms of if..else statement:

12.4.1 if...fi statement

The if...fi statement is the fundamental control statement that allows Shell to make decisions

and execute statements conditionally.

Syntax:

if [expression]

then

 Statement(s) to be executed if expression is true

Fi

Here Shell expression is evaluated. If the resulting value is true, given statement(s) are

executed. If expression is false then no statement would be not executed. Most of the times

you will use comparison operators while making decisions.

Give you attention on the spaces between braces and expression. This space is mandatory

otherwise you would get syntax error.

If expression is a shell command then it would be assumed true if it return 0 after its execution.

If it is a boolean expression then it would be true if it returns true.

2.2 Example:1

#!/bin/sh

a=10

b=20

if [$a -eq $b]

then

 echo "a is equal to b"

fi

if [$a -ne $b]

then

 echo "a is not equal to b"

fi

This will produce following result:

94

Focus Training Services - UNIX Shell Scripting V 1.0

a is not equal to b

Example:2 Send an email to a concerned person if there are more

than 5 users logged on to the system

#!/bin/bash

no_of_users_logged_in=`who | wc -l`

if [${no_of_users_logged_in} -gt 5]; then

 subject='High System Load'

 who > /tmp/list_of_users.txt

 mail -s ${subject} stuser20@sql.example.com </tmp/list_of_users.txt

fi

rm -f /tmp/list_of_users.txt

12.4.2 if...else...fi statement

The if...else...fi statement is the next form of control statement that allows Shell to execute

statements in more controlled way and making decision between two choices.

Syntax:

if [expression]

then

 Statement(s) to be executed if expression is true

else

 Statement(s) to be executed if expression is not true

Fi

Here Shell expression is evaluated. If the resulting value is true, given statement(s) are

executed. If expression is false then no statement would be not executed.

Example:1

If we take above example then it can be written in better way using if...else statement as

follows:

95

Focus Training Services - UNIX Shell Scripting V 1.0

#!/bin/sh

a=10

b=20

if [$a –eq $b]

then

 echo "a is equal to b"

else

 echo "a is not equal to b"

fi

This will produce following result:

a is not equal to b

96

Focus Training Services - UNIX Shell Scripting V 1.0

Example :2 The example below checks whether file exists

#!/bin/bash

echo “Enter the filename”

 read file1

 if [! -s file1]

 then

 echo "file1 is empty or does not exist."

 ls -l > file1

 else

 echo "File file1 already exists."

 Fi

#!/bin/bash

#script to check whether directory exists or not.

#dir=$(pwd)

a=$1

if [-d $a]; then

 echo " directory $a exists "

else

 echo " directory $a does not exists "

fi

Example:3

$ vi positive.sh

97

Focus Training Services - UNIX Shell Scripting V 1.0

#!/bin/bash

Script to see whether argument is positive or negative

if [$# -eq 0]

then

 echo "$0 : You must give/supply one integers"

 exit 1

fi

if [$1 -gt 0]

then

 echo "$1 number is positive"

else

 echo "$1 number is negative"

fi

98

Focus Training Services - UNIX Shell Scripting V 1.0

Example :4 The example below accepts two strings from user and

checks whether are equal or not

#!/bin/bash

echo Enter the strings(string1,string2)

read str1

read str2

if [str1 = str2]

then

 echo "Both Strings are equal"

else

 echo "Given strings are not equal"

fi

Example :5 Write a shell script to take a bakup of /project

directoy.Write a script in such a way that only root user can

take backup and I f the same script is run by normal user the

error Message should be reported.

#!/bin/bash

user=`whoami`

if [$user = 'root']

then

 tar –cf /backup/project.tar /project &>/dev/null

 if [$? -eq 0]

 then

 echo Backup taken successfully...

 else

 echo Error in taking backup file

 fi

else

 echo "You are not authorized to run this script $0"

fi

99

Focus Training Services - UNIX Shell Scripting V 1.0

Example:6 Write a shell Script to pass username to shell script and

check whether that user exists or not in your system

#!/bin/bash

echo "Enter user name"

read usr

cat /etc/passwd|grep –wo ^$usr &>/dev/null

if [$? -eq 0]

then

 echo "$usr exists"

else

 echo "$usr does not exists"

fi

Example :7 Write a shell script to send database name as command

line argument to shell script and check whether that database is

running or not

$vim db_status.sh

#!/bin/bash

export ORACLE_SID=$1

sqlplus / as sysdba<<EOF &>/dev/null

spool status.txt

select sysdate from dual;

spool off

EOF

status=`grep –c ‘ORA’ status.txt`

if [$status –gt 0]

then

 echo $1 is running…

else

 echo $1 id down…

fi

100

Focus Training Services - UNIX Shell Scripting V 1.0

Example:8 Write a shell script to display message to user whether

the databse listner is available or not.

$vim db_listener_status.sh

#!/bin/bash

lsnrctl status &>/dev/null

if [$? –eq 0]

then

 echo Listener is running…

else

 echo Listener id down…

fi

12.4.3 if...elif...else...fi statement

if [expression 1]

then

 Statement(s) to be executed if expression 1 is true

101

Focus Training Services - UNIX Shell Scripting V 1.0

elif [expression 2]

then

 Statement(s) to be executed if expression 2 is true

elif [expression 3]

then

 Statement(s) to be executed if expression 3 is true

else

 Statement(s) to be executed if no expression is true

Fi

There is nothing special about this code. It is just a series of if statements, where each if is part

of the else clause of the previous statement. Here statement(s) are executed based on the true

condition, if none of the condition is true then else block is executed.

Example:1

#!/bin/sh

a=10

b=20

if [$a –eq $b]

then

 echo "a is equal to b"

elif [$a -gt $b]

then

 echo "a is greater than b"

elif [$a -lt $b]

then

 echo "a is less than b"

else

 echo "None of the condition met"

fi

This will produce following result:

a is less than b

102

Focus Training Services - UNIX Shell Scripting V 1.0

Example 2:

$ vi elf.sh

#!/bin/sh

Script to test if..elif...else

if [$1 -gt 0]; then

 echo "$1 is positive"

elif [$1 -lt 0]

then

 echo "$1 is negative"

elif [$1 -eq 0]

then

 echo "$1 is zero"

else

 echo "Opps! $1 is not number, give number"

fi

103

Focus Training Services - UNIX Shell Scripting V 1.0

12.5 Looping Statements

Loops are a powerful programming tool that enable you to execute a set of commands

repeatedly. In this tutorial, you would examine the following types of loops available to shell

programmers:

• The while loop

• The for loop

• The until loop

12.5.1 The while loop

You would use different loops based on dfferent situation. For example while loop would

execute given commands until given condition remains true where as until loop would execute

until a given condition becomes true.

Once you have good programming practice you would start using appropriate loop based on

situation. Here while and for loops are available in most of the other programming languages

like C, C++ and PERL etc.

Similar to the basic if statement, except the block of commands is repeatedly executed as long

as the condition is met.

while condition-command

 do

 command1

 command2

 ...

 done

As with if statements, a semicolon (;) can be used to remove include the do keyword on the

same line as the while condition-command statement.

The example below loops over two statements as long as the variable i is less than or equal to

ten. Store the following in a file named while1.sh and execute it

104

Focus Training Services - UNIX Shell Scripting V 1.0

Example:1

#!/bin/bash

#Illustrates implementing a counter with a while loop

#Notice how we increment the counter with expr in backquotes

 i=1

 while [$i -le 10]

 do

 echo "i is $i"

 i=`expr $i + 1`

 done

Example:2 Lock the user accounte whoes uid is between the range

of 500 to 510

#!/bin/bash

while read line

do

 uname=`echo $line|cut -d":" -f1`

 id=`echo $line|cut -d":" -f3`

 if [$id -ge 500 -a $id -le 520]

 usermod -L $uname &>/dev/null

 echo "User $uname Locked...."

 fi

done</etc/passwd

Example:3 Change the shell of users to csh whoes id is between

the range of 500 to 520 and login shell is bash.

#!/bin/bash

while read line

do

 uname=`echo $line|cut -d":" -f1`

 id=`echo $line|cut -d":" -f3`

 shell=`echo $line|cut –d":" –f7`

 if [$id -ge 500 -a $id -le 520 –a $shell = ‘/bin/bash’]

 usermod –s /bin/csh &>/dev/null

 echo "Shell of $uname changed to /bin/csh"

 fi

done</etc/passwd

105

Focus Training Services - UNIX Shell Scripting V 1.0

12.5.2 The for loop

The for loop operate on lists of items. It repeats a set of commands for every item in a list.

Syntax:

for var in word1 word2 ... wordN

do

 Statement(s) to be executed for every word.

Done

Here var is the name of a variable and word1 to wordN are sequences of characters separated

by spaces (words). Each time the for loop executes, the value of the variable var is set to the

next word in the list of words, word1 to wordN.

Example:

Here is a simple example that uses for loop to span through the given list of numbers:

Example:1

#!/bin/sh

for var in 0 1 2 3 4 5 6 7 8 9

do

 echo $var

done

This will produce following result:

0

1

2

3

4

5

6

7

8

9

106

Focus Training Services - UNIX Shell Scripting V 1.0

Example:2

#!/bin/bash

a=$(seq 1 1 5)

for i in $a

do

 echo "Value of i = $i"

done

Following is the example to display all the files starting with .bash and available in your home.

I'm executing this script from my root:

Example:

#!/bin/sh

for FILE in $HOME/.bash*

do

 echo $FILE

done

This will produce following result:

/root/.bash_history

/root/.bash_logout

/root/.bash_profile

/root/.bashrc

Example:3

107

Focus Training Services - UNIX Shell Scripting V 1.0

#!/bin/bash

echo "You want to ping $1 network"

for i in $(seq 1 1 10)

do

 ping -c1 $1.$i > /dev/null 2>&1

 if [$? -eq 0]; then

 echo "Node $1.$i is up"

 else

 echo "Node $1.$i is down"

 fi

done

Example:4

108

Focus Training Services - UNIX Shell Scripting V 1.0

Example:

#!/bin/bash

#for i in /home/ganeshn /home/prashatw /home/abhijit

for i in $(ls /home)

do

 bname=$(basename${i})

 echo "backing up $i...."

 tar -cf /backup/$bname.tar /home/$i > /dev/null 2>&1

done

echo "backup done"

12.5.3 The until loop

he while loop is perfect for a situation where you need to execute a set of commands while

some condition is true. Sometimes you need to execute a set of commands until a condition is

true.

Syntax:

until command

do

 Statement(s) to be executed until command is true

Done

Here Shell command is evaluated. If the resulting value is false, given statement(s) are

executed. If command is true then no statement would be not executed and program would

jump to the next line after done statement.

109

Focus Training Services - UNIX Shell Scripting V 1.0

Example:

Here is a simple example that uses the until loop to display the numbers zero to nine:

#!/bin/sh

a=0

until [! $a -lt 10]

do

 echo $a

 a=`expr $a + 1`

done

This will produce following result:

0

1

2

3

4

5

6

7

8

9

12.6 Break and Continue statements

So far you have looked at creating loops and working with loops to accomplish different tasks.

Sometimes you need to stop a loop or skip iterations of the loop.

In this tutorial you will learn following two statements used to control shell loops:

1. The break statement

2. The continue statement

The infinite Loop:

All the loops have a limited life and they come out once the condition is false or true depending

on the loop.

A loop may continue forever due to required condition is not met. A loop that executes forever

without terminating executes an infinite number of times. For this reason, such loops are called

infinite loops.

110

Focus Training Services - UNIX Shell Scripting V 1.0

Example:

Here is a simple example that uses the while loop to display the numbers zero to nine:

#!/bin/sh

a=20

while [$a -gt 10]

do

 echo $a
done

This loop would continue forever because a is alway greater than 10 and it would never

become less than 10. So this true example of infinite loop.

12.6.1 The break statement:

The break statement is used to terminate the execution of the entire loop, after completing the

execution of all of the lines of code up to the break statement. It then steps down to the code

following the end of the loop.

Syntax:

The following break statement would be used to come out of a loop:

break

The break command can also be used to exit from a nested loop using this format:

Here n specifies the nth enclosing loop to exit from.

break n

Example:

Here is a simple example which shows that loop would terminate as soon as a becomes 5:

#!/bin/sh

a=0

while [$a -lt 10]

do

 echo $a

 if [$a -eq 5]

 then

 break

 fi

 a=`expr $a + 1`

done

This will produce following result:

111

Focus Training Services - UNIX Shell Scripting V 1.0

0

1

2

3

4

5

The break statement will cause the shell to stop executing the current loop and continue

on after its end.

#!/bin/sh

files=`ls`

count=0

for i in $files

do

 count=`expr $count + 1`

 if [$count -gt 100]

 then

 echo "There are more than 100 files in the current

 directory"

 break

 fi

done

112

Focus Training Services - UNIX Shell Scripting V 1.0

#!/bin/bash

while [1 = 1]

do

 if [-f $1]; then

 break

 else

 sleep 1

 echo "file doesnt exists !!"

 fi

done

 echo " file is present in your directory "

113

Focus Training Services - UNIX Shell Scripting V 1.0

12.6.2 continue statement:

The continue statement is similar to the break command, except that it causes the current

iteration of the loop to exit, rather than the entire loop.

This statement is useful when an error has occurred but you want to try to execute the next

iteration of the loop.

Syntax:

Continue

Like with the break statement, an integer argument can be given to the continue command to

skip commands from nested loops.

continue n

Here n specifies the nth enclosing loop to continue from.

Example:

The following loop makes use of continue statement which returns from the continue

statement and start processing next statement:

#!/bin/sh

NUMS="1 2 3 4 5 6 7"

for NUM in $NUMS

do

 Q=`expr $NUM % 2`

 if [$Q -eq 0]

 then

 echo "Number is an even number!!"

 continue

 fi

 echo "Found odd number"

done

This will produce following result:

Found odd number

Number is an even number!!

Found odd number

Number is an even number!!

Found odd number

Number is an even number!!

Found odd number

114

Focus Training Services - UNIX Shell Scripting V 1.0

13 Reading from file

you may have written programms for processing file in c language or any other programming

language.But for that you may have performed lot of steps only for reading from a file.For

example in c language you have to declare a file pointer writing loops,closing pointers etc.

But in shell scripting it is quite easier to process data from a file

You will find that this is one of the fastest ways to process each line of a

file. The first time you see this it looks a little unusual, but it works very well

while read LINE

do

 echo “$LINE”

done < $FILENAME

By using the < $FILENAME notation after the done loop terminator

we feed the while loop from the bottom, which greatly increases the input throughput

to the loop. When we time each technique, this method will stand out at the top of the list.

#This script reads a file word by word

#!/bin/bash

echo "Reading file word by word : "

for var in $(cat tryfile)

do

 echo "Word = $var"

done

115

Focus Training Services - UNIX Shell Scripting V 1.0

14 Wildcards in UNIX

14.1 How to use UNIX Wildcards

Many computer operating systems provide ways to select certain files without typing complete

filenames. For example, we may wish to remove all files whose names end with "old". Unix

allows us to use wildcards (more formally known as metacharacters) to stand for one or more

characters in a filename.

The two basic wildcard characters are ? and *. The wildcard ? matches any one character. The

wildcard * matches any grouping of zero or more characters. Some examples may help to

clarify this. (Remember that Unix is casesensitive).

Assume that your directory contains the following files:

Chap bite bin

bit Chap6 it

test.new abc

Lit site test.old

Big snit bin.old

The ? wildcard

The command ls will list all the files. The command

$ ls ?bit

 bit

lists only the files Lit and bit. The file snit was not listed because it has two characters before

"it". The file it was not listed because it has no characters before "it".

The ? wildcard may be used more than once in a command. For

116

Focus Training Services - UNIX Shell Scripting V 1.0

Example,

$ ls ?i?

Lit big bin bit

Finds any files with "i" in the middle, one character before and one character after.

The * wildcard

The * wildcard is more general. It matches zero or any number of characters, except that it will

not match a period

that is the first character of a name.

$ ls *t

lit bit it snit

Using this wildcard finds all the files with "it" as the last two characters of the name (although it

would not have found

a file called .bit).

We could use this wildcard to remove all files in the directory whose names begin with "test".

The command to do this

is

$rm test*

Be careful when using the * wildcard, especially with the rm command. If we had mistyped this

command by adding a

space between test and *, Unix would look first for a file called test, remove it if found, and

then proceed to remove all

the files in the directory!

Matching a range of characters with []

117

Focus Training Services - UNIX Shell Scripting V 1.0

The ? wildcard matches any one character. To restrict the matching to a particular character or

range of characters, use square brackets [] to include a list. For example, to list files ending in

"ite", and beginning with only "a", "b", "c",

or "d" we would use the command:

$ ls [abcd]ite

This would list the file bite, but not the file site. Note that the sequence [] matches only one

character. If we had a file

called delite, the above command would not have matched it.

We can also specify a range of characters using []. For instance, [1-3] will match the digits 1, 2

and 3, while[A-Z]

matches all capital letters.

ls [A-Z]it

Will find any file ending in "it" and beginning with a capital letter (in this case, the file Lit).

Wildcards can also be combined with [] sequences. To list any file beginning with a capital

letter, we would use:

$ ls [A-Z]*

Chap1 Chap6 Lit

Matching a string of characters with { }

The method described in the previous section matches a single character or range of

characters. It is also possible to match a particular string by enclosing the string in { } (braces).

For example, to list only the files ending in the string "old", we would use

$ ls *{old}

bin.old test.old

To list all files ending in either "old" or "new", use

$ ls *{old,new}

118

Focus Training Services - UNIX Shell Scripting V 1.0

119

Focus Training Services - UNIX Shell Scripting V 1.0

15 Functions

Functions enable you to break down the overall functionality of a script into smaller, logical

subsections, which can then be called upon to perform their individual task when it is needed.

Using functions to perform repetitive tasks is an excellent way to create code reuse. Code reuse

is an important part of modern object-oriented programming principles.

Shell functions are similar to subroutines, procedures, and functions in other programming

languages.

15.1 Creating Functions:

To declare a function, simply use the following syntax:

function_name () {

 list of commands

}

The name of your function is function_name, and that's what you will use to call it from

elsewhere in your scripts. The function name must be followed by parentheses, which are

followed by a list of commands enclosed within braces.

Example:

Following is the simple example of using function:

#!/bin/sh

Define your function here

Hello () {

 echo "Hello World"

}

Invoke your function

Hello

When you would execute above script it would produce following result:

amrood]$./test.sh

Hello World

[amrood]$

120

Focus Training Services - UNIX Shell Scripting V 1.0

15.2 Pass Parameters to a Function:

You can define a function which would accept parameters while calling those function. These

parameters would be represented by $1, $2 and so on.

Following is an example where we pass two parameters Zara and Ali and then we capture and

print these parameters in the function.

#!/bin/sh

Define your function here

Hello () {

 echo "Hello World $1 $2"

}

Invoke your function

Hello Zara Ali

This would produce following result:

[amrood]$./test.sh

Hello World Zara Ali

[amrood]$

15.3 Returning Values from Functions:

If you execute an exit command from inside a function, its effect is not only to terminate

execution of the function but also of the shell program that called the function.

If you instead want to just terminate execution of the function, then there is way to come out

of a defined function.

Based on the situation you can return any value from your function using the return command

whose syntax is as follows:

return code

Here code can be anything you choose here, but obviously you should choose something that is

meaningful or useful in the context of your script as a whole.

Example:

Following function returns a value 1:

121

Focus Training Services - UNIX Shell Scripting V 1.0

#!/bin/sh

Define your function here

Hello () {

 echo "Hello World $1 $2"

 return 10

}

Invoke your function

Hello Zara Ali

Capture value returnd by last command

ret=$?

echo "Return value is $ret"

This would produce following result:

[amrood]$./test.sh

Hello World Zara Ali

Return value is 10

[amrood]$

15.4 Function Call from Prompt:

You can put definitions for commonly used functions inside your .profile so that they'll be

available whenever you log in and you can use them at command prompt.

Alternatively, you can group the definitions in a file, say test.sh, and then execute the file in the

current shell by typing:

[amrood]$. test.sh

This has the effect of causing any functions defined inside test.sh to be read in and defined to

the current shell as follows:

[amrood]$ number_one

This is the first function speaking...

This is now the second function speaking...

[amrood]$

To remove the definition of a function from the shell, you use the unset command with the .f

option. This is the same command you use to remove the definition of a variable to the shell.

[amrood]$unset .f function_name

122

Focus Training Services - UNIX Shell Scripting V 1.0

123

Focus Training Services - UNIX Shell Scripting V 1.0

16 Arrays

A shell variable is capable enough to hold a single value. This type of variables are called scalar

variables.

Shell supports a different type of variable called an array variable that can hold multiple values

at the same time. Arrays provide a method of grouping a set of variables. Instead of creating a

new name for each variable that is required, you can use a single array variable that stores all

the other variables.

All the naming rules discussed for Shell Variables would be applicable while naming arrays.

16.1 Defining Array Values:

The difference between an array variable and a scalar variable can be explained as follows.

Say that you are trying to represent the names of various students as a set of variables. Each of

the individual variables is a scalar variable as follows:

NAME01="Zara"

NAME02="Qadir"

NAME03="Mahnaz"

NAME04="Ayan"

NAME05="Daisy"

We can use a single array to store all the above mentioned names. Following is the simplest

method of creating an array variable is to assign a value to one of its indices. This is expressed

as follows:

array_name[index]=value

Here array_name is the name of the array, index is the index of the item in the array that you

want to set, and value is the value you want to set for that item.

As an example, the following commands:

NAME[0]="Zara"

NAME[1]="Qadir"

NAME[2]="Mahnaz"

NAME[3]="Ayan"

NAME[4]="Daisy"

If you are using ksh shell the here is the syntax of array initialization:

124

Focus Training Services - UNIX Shell Scripting V 1.0

set -A array_name value1 value2 ... valuen

If you are using bash shell the here is the syntax of array initialization:

array_name=(value1 ... valuen)

16.2 Accessing Array Values:

After you have set any array variable, you access it as follows:

${array_name[index]}

Here array_name is the name of the array, and index is the index of the value to be accessed.

Following is the simplest example:

#!/bin/sh

NAME[0]="Zara"

NAME[1]="Qadir"

NAME[2]="Mahnaz"

NAME[3]="Ayan"

NAME[4]="Daisy"

echo "First Index: ${NAME[0]}"

echo "Second Index: ${NAME[1]}"

This would produce following result:

[amrood]$./test.sh

First Index: Zara

Second Index: Qadir

You can access all the items in an array in one of the following ways:

${array_name[*]}

${array_name[@]}

ere array_name is the name of the array you are interested in. Following is the simplest

example:

125

Focus Training Services - UNIX Shell Scripting V 1.0

#!/bin/sh

NAME[0]="Zara"

NAME[1]="Qadir"

NAME[2]="Mahnaz"

NAME[3]="Ayan"

NAME[4]="Daisy"

echo "First Method: ${NAME[*]}"

echo "Second Method: ${NAME[@]}"

This would produce following result:

[amrood]$./test.sh

First Method: Zara Qadir Mahnaz Ayan Daisy

Second Method: Zara Qadir Mahnaz Ayan Daisy

126

Focus Training Services - UNIX Shell Scripting V 1.0

17 Signal Trapping

Signals are software interrupts sent to a program to indicate that an important event has

occurred. The events can vary from user requests to illegal memory access errors. Some signals,

such as the interrupt signal, indicate that a user has asked the program to do something that is

not in the usual flow of control.

The following are some of the more common signals you might encounter and want to use in

your programs:

Signal Name
Signal

Number
Description

SIGHUP 1
Hang up detected on controlling terminal or

death of controlling process

SIGINT 2
Issued if the user sends an interrupt

signal (Ctrl + C).

SIGQUIT 3
Issued if the user sends a quit signal

(Ctrl + D).

SIGFPE 8
Issued if an illegal mathematical operation

is attempted

SIGKILL 9

If a process gets this signal it must quit

immediately and will not perform any clean-

up operations

SIGALRM 14 Alarm Clock signal (used for timers)

SIGTERM 15
Software termination signal (sent by kill

by default).

17.1 List of Signals:

There is an easy way to list down all the signals supported by your system. Just issue kill -l

command and it would display all the supported signals:

127

Focus Training Services - UNIX Shell Scripting V 1.0

[amrood]$ kill -l

 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL

 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE

 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT

17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU

25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH

29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN

35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4

39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8

43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12

47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14

51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10

55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6

59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2

63) SIGRTMAX-1 64) SIGRTMAX

The actual list of signals varies between Solaris, HP-UX, and Linux.

17.2 Default Actions:

Every signal has a default action associated with it. The default action for a signal is the action

sithat a script or program performs when it receives a signal.

Some of the possible default actions are:

• Terminate the process.

• Ignore the signal.

• Dump core. This creates a file called core containing the memory image of the process

when it received the signal.

• Stop the process.

• Continue a stopped process.

17.3 Sending Signals:

There are several methods of delivering signals to a program or script. One of the most

common is for a user to type CONTROL-C or the INTERRUPT key while a script is executing.

When you press the Ctrl+C key a SIGINT is sent to the script and as per defined default action

script terminates.

The other common method for delivering signals is to use the kill command whose syntax is as

follows:

[amrood]$ kill -signal pid

128

Focus Training Services - UNIX Shell Scripting V 1.0

Here signal is either the number or name of the signal to deliver and pid is the process ID that

the signal should be sent to. For Example:

Sends the HUP or hang-up signal to the program that is

running with process ID 1001. To send a kill signal to the same

process use the folloing command:

[amrood]$ kill -9 1001

This would kill the process running with process ID 1001.

17.4 Trapping Signals:

When you press the Ctrl+C or Break key at your terminal during execution of a shell program,

normally that program is immediately terminated, and your command prompt returned. This

may not always be desirable. For instance, you may end up leaving a bunch of temporary files

that won't get cleaned up.

Trapping these signals is quite easy, and the trap command has the following syntax:

$ trap commands signals

Here command can be any valid Unix command, or even a user-defined function, and signal can

be a list of any number of signals you want to trap.

There are following common uses for trap in shell scripts:

1. Clean up temporary files

2. Ignore signals

Example

Following script dehmonstrate the tarping the TERM signal when it is send to shell script

vi trap.sh

#!/bin/bash

trap "echo 'trapped the signal TERM'" TERM

echo "starting infinite looop"

i=1

while [1 -eq 1]

do

 echo "$i. sleeping for 1 sec..."

 sleep 1

 i=$(($i + 1))

done

[amrood]$ kill -1 1001

129

Focus Training Services - UNIX Shell Scripting V 1.0

130

Focus Training Services - UNIX Shell Scripting V 1.0

18 awk

awk options ‘selection criteria { action }’ file(s)

AWK is a parser and a powerful report building tool.

Let's go ahead and start playing around with awk to see how it works. At the command line,

enter the following command:

$ awk '{ print }' /etc/passwd

You should see the contents of your /etc/passwd file appear before your eyes. Now, for an

explanation of what awk did. When we called awk, we specified /etc/passwd as our input file.

When we executed awk,

• it evaluated the print command for each line in /etc/passwd, in order.

• All output is sent to stdout, and we get a result identical to catting /etc/passwd.

Now, for an explanation of the { print } code block. In awk, curly braces are used to group blocks of

code together, similar to C.

Inside our block of code, we have a single print command. In awk, when a print command appears

by itself, the full contents of the current line are printed.

Here is another awk example that does exactly the same thing:

$ awk ‘/director/ {print}’ emp.lst

131

Focus Training Services - UNIX Shell Scripting V 1.0

This will find out all lines in emp.lst file that contain

the word “director” and print them to the stdout. Same as

grep director emp.lst

$ awk ‘/director/ ’ emp.lst Print is the default action

$ awk '{ print $0 }' /etc/passwd

In awk, the $0 variable represents the entire current line, so print and print $0 do exactly the

same thing. If you'd like, you can create an awk program that will output data totally unrelated

to the input data. Here's an example:

$ awk '{ print "" }' /etc/passwd

Whenever you pass the "" string to the print command, it prints a blank line. If you test this

script, you'll find that awk outputs one blank line for every line in your /etc/passwd file. Again,

this is because awk executes your script for every line in the input file. Here's another example:

$ awk '{ print "hiya" }' /etc/passwd

Running this script will fill your screen with hiya's. :)

Multiple fields

Awk is really good at handling text that has been broken into multiple logical fields, and allows

you to effortlessly reference each individual field from inside your awk script. The following

script will print out a list of all user accounts on your system:

132

Focus Training Services - UNIX Shell Scripting V 1.0

$ awk -F":" '{ print $1 }' /etc/passwd

Above, when we called awk, we use the -F option to specify ":" as the field separator. When

awk processes the print $1 command, it will print out the first field that appears on each line in

the input file. Here's another example:

$ awk -F":" '{ print $1 $3 }' /etc/passwd

Here's an excerpt of the output from this script:

halt7

operator11

root0

shutdown6

sync5

bin1

....etc.

As you can see, awk prints out the first and third fields of the /etc/passwd file, which happen to

be the username and uid fields respectively. Now, while the script did work, it's not perfect --

there aren't any spaces between the two output fields! If you're used to programming in bash

or python, you may have expected the print $1 $3 command to insert a space between the two

fields. However, when two strings appear next to each other in an awk program, awk

concatenates them without adding an intermediate space. The following command will insert a

space between both fields:

$ awk -F":" '{ print $1 " " $3 }' /etc/passwd

133

Focus Training Services - UNIX Shell Scripting V 1.0

When you call print this way, it'll concatenate $1, " ", and $3, creating readable output. Of

course, we can also insert some text labels if needed:

$ awk -F":" '{ print "username: " $1 "\t\tuid:" $3" }' /etc/passwd

This will cause the output to be:

username: halt uid:7

username: operator uid:11

username: root uid:0

username: shutdown uid:6

username: sync uid:5

username: bin uid:1

....etc.

AWK Variables

You can use variables in awk and assign values to them.

They do not need a $ sign in front of them like shell

variables. Variables do not have data type. Variables are

not declared. String variables are always double quoted.

Numbera are initialized to 0 and strings are initialized to

null (empty string)

X = “5”

Y =10

Z=”A”

Print X + Y Prints 15

Print XY Prints 510

Print Y + Z Prints 10. Z is converted to 0 since it does

 not have numerals

134

Focus Training Services - UNIX Shell Scripting V 1.0

$ awk –F”|” ‘/director/ { kount = kount + 1

> printf “%3d %-20s”, kount, $2}

Prints formatted output with line numbers

AWK Expressions

AWK expressions either have a value of true or false. A

positive number or a not empty string is true.

X=”AAAA”

Y=-1

If (X) will return true

If (Y) will return false

We will learn more about if statement later

How to check the value of an expression in awk This is

only way. Another way is to use if statement

$ awk –F”|” ‘ $3 == “director” { print $0}’ emp.lst

Print entire line from the emp.lst only if the third field

is “director”

$ awk –F”|” ‘ $3 == “director” || $3 == “chairman” { print

$0}’ emp.lst

Print entire line from the emp.lst only if the third field

is “director” or “chairman”

$ awk –F”|” ‘ $6 > 8000 && $3 == “supervisor” { print $0}’

emp.lst

Print entire line from the emp.lst only if the employee is

a supervisor and has a salary more than 8000”

|| OR operator

&& AND operator

== is equql to

!= is not equal to

> is less than

135

Focus Training Services - UNIX Shell Scripting V 1.0

< is greater than

>= is greater than or equal to

<= is less than or equal to

External scripts

Passing your scripts to awk as a command line argument can be very handy for small one-liners,

but when it comes to complex, multi-line programs, you'll definitely want to compose your

script in an external file. Awk can then be told to source this script file by passing it the -f

option:

$ awk -f myscript.awk myfile.in

Putting your scripts in their own text files also allows you to take advantage of additional awk

features. For example, this multi-line script does the same thing as one of our earlier one-liners,

printing out the first field of each line in /etc/passwd:

BEGIN {

 FS=":"

}

{ print $1 }

The difference between these two methods has to do with how we set the field separator. In

this script, the field separator is specified within the code itself (by setting the FS variable),

while our previous example set FS by passing the -F":" option to awk on the command line. It's

generally best to set the field separator inside the script itself, simply because it means you

have one less command line argument to remember to type. We'll cover the FS variable in

more detail later in this article.

The BEGIN and END blocks

136

Focus Training Services - UNIX Shell Scripting V 1.0

Normally, awk executes each block of your script's code once for each input line. However,

there are many programming situations where you may need to execute initialization code

before awk begins processing the text from the input file. For such situations, awk allows you to

define a BEGIN block. We used a BEGIN block in the previous example. Because the BEGIN block

is evaluated before awk starts processing the input file, it's an excellent place to initialize the FS

(field separator) variable, print a heading, or initialize other global variables that you'll

reference later in the program.

Awk also provides another special block, called the END block. Awk executes this block after all

lines in the input file have been processed. Typically, the END block is used to perform final

calculations or print summaries that should appear at the end of the output stream.

 Regular expressions and blocks

Awk allows the use of regular expressions to selectively execute an individual block of code,

depending on whether or not the regular expression matches the current line. Here's an

example script that outputs only those lines that contain the character sequence foo:

/foo/ { print }

Of course, you can use more complicated regular expressions. Here's a script that will print only

lines that contain a floating point number:

/[0-9]+\.[0-9]*/ { print }

Expressions and blocks

There are many other ways to selectively execute a block of code. We can place any kind of

boolean expression before a code block to control when a particular block is executed. Awk will

execute a code block only if the preceding boolean expression evaluates to true. The following

137

Focus Training Services - UNIX Shell Scripting V 1.0

example script will output the third field of all lines that have a first field equal to fred. If the

first field of the current line is not equal to fred, awk will continue processing the file and will

not execute the print statement for the current line:

$1 == "fred" { print $3 }

Awk offers a full selection of comparison operators, including the usual "==", "<", ">", "<=",

">=", and "!=". In addition, awk provides the "~" and "!~" operators, which mean "matches" and

"does not match". They're used by specifying a variable on the left side of the operator, and a

regular expression on the right side. Here's an example that will print only the third field on the

line if the fifth field on the same line contains the character sequence root:

$1 ~ /root/ { print $3 }

Conditional statements

Awk also offers very nice C-like if statements. If you'd like, you could rewrite the previous script

using an if statement:

{

 if ($5 ~ /root/) {

 print $3

 }

}

138

Focus Training Services - UNIX Shell Scripting V 1.0

19 UNIX Interview Questions

1.What OS are you running

uname

2.What is your kernel version

uname -r

3.For how long your machine is running

uptime

4.How many users are logged on to your system

w

5.What is user "shekhar" doing now

w|grep shekhar

6.When did user rohit logged in

w|grep rohit

7.From which machine user prakash has logged in

who|grep prakash

8.what is the login shell of user roshan

cat /etc/passwd|grep roshan|cut -d":" -f7

9.What is the home directory of user prakash

cat /etc/passwd|grep roshan|cut -d":" -f6

139

Focus Training Services - UNIX Shell Scripting V 1.0

10.How many users do not have bash shell assigned to them

cat /etc/passwd|grep -v /bin/bash|wc -l

11.Create an alias named i to display ip address of your machine. Make is parmanent.

vim .bash_profile

alias i='ifconfig'

:wq

12.What group/s do you belong to

groups

13.What group/s are assigned to shekhar

groups shekhar

14.What are the last 10 commands that you have executed

tail .bash_history

15.How many times you have executed cd command receltly

cat .bash_history|grep cd

16.Can you read a file named /etc/fstab.

yes (but can't write to this file)

17.Can user shekhar read the same file

yes

18.Do you have the permission to modify /etc/sysctl.conf file. Who can modify it.

no.only root user.

140

Focus Training Services - UNIX Shell Scripting V 1.0

19.How much of RAM do you have on your machine

free -m

20.What is the size of your swap

free -m|grep -i swap

21.How many processes are currently running (not sleeping)

top

22.Which process is taking the maximum CPU

top

23.Which process is taking the maximum memory

top

24.When I type ifconfig command I get the error message "command not found". What is the

problem and how can I solve it permaneltly.

--if normal user is not having permission of running ifconfig command.can solved by making

entry

in /etc/sudoers file by root user

--or if permission is there but path is not fount then set the path for ifonfig command

ex-- PATH=$PATH:/sbin/ifconfig

25.Is oracle running on your server

ps -ef|grep oracle

26.How many oracle databases are running on the server

27.How can you change the default permissions of a file to r--r--r when the file gets created

141

Focus Training Services - UNIX Shell Scripting V 1.0

by using umask command

ex:umask 0222

28.What is the current date on your system

date +%D

29.What is the current time on your system

date +%T

30.How to find out the time required to run a specific command

time command

30. Find out all files in /tmp directory whose owner is shekhar

find /tmp -user shekhar

31.Find out all files older than 30 days whose extension is log and delete them - in one

command

Vi Questions

a. Go to the end of the file

G

b. GO to the begining of the file

gg or :1 enter

c. Find a word "tom" and replace it by "dick"

:1 $s/tom/dick/g

d. How to undo any mistake

ESC u

142

Focus Training Services - UNIX Shell Scripting V 1.0

e. How to quit the file without saving and discard changes that you have made

q!

f. How to copy 30 lines and paste at the very begining

30 yy

ESC gg

p

143

Focus Training Services - UNIX Shell Scripting V 1.0

20 Useful Assignments

20.1 Shell Scripting Assignments for Linux Admins

1) Write a shell script for download a file from ftp server.

� schedule it to run at a specific time.

� send success or failure email.

� Use command line arguments for sending ip of the ftp server and loginID & password

2) Check the status (ping) of the server by shell script.

� Server ip should be sent as a command line arg.

� If not sent give an error message.

� Send email of failure.

3) Write a shell that will chechk the status (Ping) of entire network.

� send the list of down servers as a email attachment to respective authority

� The list of server is kept in a file named /opt/server_list.txt

4) Write a shell script for generating File system space utilization report.

� Indent the content of report nicely.

� The report should be sent every morning at 8:00 AM.

5) Write a shell script that will Clone a VirtualMachine

� Make it an interactive script i.e the location to store the clone

� size reqired to VM etc should be provided by user.

� Note:Disk space shpould be checked before cloning

6) Write a shell script Lock all users between UID 500 and 530

7) Write a shell script Lock all users whose names are in a file called users.txt

144

Focus Training Services - UNIX Shell Scripting V 1.0

8) Write a shell script recycle log files in /var directory

� remove oldest lines.

� Put this in a crontab.

� make sure that you leave atleast 1000 lines in the file.

9) Write a shell script to Identify list of user who have executed more than 10 jobs yesterday.

 send this report in an email.

10) Write a shell script to find files larger that a specific size.

� report it to a concerned person through email.

11) Generate and email Security check report daily

� List uf users with 0 UID

� List of users in visudo file

� List of files on your system with 777 permissions

� List of users who did su to the root account that day only

12) Write a shell script to Reset passwords of all users listed in a file user.list

20.2 Shell Scripting Assignment for Oracle

1. Load data from a file

2. Extract data from a file and then ftp that file to another server.

 Schedule it daily.

 Send email on success or failure

3. Generate a report of Top 5 customers and their revenue for the last year

145

Focus Training Services - UNIX Shell Scripting V 1.0

 and email this report to all participants whose email addresses are present

 in a file named email_list.txt

4. Backup of oracle database (RMAN)

5. Export of oracle database. Name of the DB should be sent as a command line argument. send

email.

6.Check instance availability.

7.Check the listener avalability.

